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ABSTRACT:
We  proposes  a  new  self-similar  transformation  of  the  KP  equation  for  mapping  into  KdV  equation  and  finds  its
novel  rogue-like  parabolic  solitons  with  the  ‘short-lived’ , which  is  similar  to  the  rogue wave  in  NLS equation  for

first  time.

The  new  solutions   may  be  useful  in  the  theory  of  rogue  waves  in  a  prototypical   example  of  rogue  wave  in
the (2+1)-dimensional nonlinear wave models. These studies could be helpful to deepen our understandings and enrich
our knowledge about rogue waves.
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1. INTRODUCTION 
Rogue waves are a typical natural phenomenon that can occur in a variety of different physical environments [1]. The 
study on the rogue waves has become one of the hot and important subjects in natural science [2]. They are 
characterized by large amplitude, high steepness, no warning, short lives, etc. Theoretically, rational solutions of 
nonlinear Schrödinger (NLS) equation play a major role in the study of rogue waves for deep water. Rogue waves 
appear also in many other physical fields where the NLS type systems can be used, especially in fluid 
mechanics[3-5],nonlinear optical systems[6,7], plasmas[8,9], Bose-Einstein condensates[10,11], turbulence[12], 
microwaves[13], super-fluids[14], atmosphere[15], communications[16], capillary systems[17], financial 
systems[18], particulate matter[17], and magnetic materials [20]. In the past decades, the research on rogue waves 
has not only abundant theoretical results [21-36], but also abundant experimental verification [37-43].  
 
We know that the mathematical description of water waves in shallow waters and coastal areas is usually based on 
solutions of the Korteweg–de Vries (KdV) equation or the Kadomtsev-Petviashvili (KP) equations [44,45], while the 
mathematical description of water waves in the open ocean and deep water are described by the NLS equation. 
However, the NLS equation has solutions in the form of rogue waves [46] and those phenomena have been observed 
in water tanks [42]. Therefore, it is of both theoretical and practical value to search for rogue wave solutions of the 
KP equation or the KdV equation as same those of the NLS equation, because the extreme water wave events 
frequently hit beaches and coastal areas and cause significant damage and loss of life, after all, constitute nearly 70% 
of the total number of extreme water wave events [47]. Of course, it needs to be mentioned here, in order to describe 
the shallow water rogue wave in shallow waters and coastal areas, Abdel-Gawad et al. [48] made the first attempts to 
find rogue wave solutions of the complex KdV equation derived by Levi [49]. Recently, Ankiewicz et al. [50] further 
investigated formation of rogue waves in shallow water from the modified KdV equation by using the complex 
Miura transformation. However, little has not been done on this subject for the KP equation, overall. 
 
The paper is organized as follows. We first proposed the idea of self-similar transformation and searched for 
constructing method of self-similar wave in the frame of the KP equation. which is mapped to the KdV equation in 
Section 2, and secondly, we study the two-dimensional self-similar rogue parabolic-soliton on a inclined plane 
background for the KP equation (1) in Section 3. Finally, our conclusions are presented in Section 4.  
 
2. SELF-SIMILAR TRANSFORMATION   
We consider the following KP equation: 

  2 26 +3 0 1t x xxx yyx
u uu u u + + = = ， ，

                
 (1) 

where subscripts denote differentiation, which is of considerable importance both in physics and mathematics. Eq.(1) 
arises in many physical applications including weakly two-dimensional long waves in shallow water, the sign of 

2 depends upon the relevant magnitudes of gravity and surface tension[2], which is classified as the KPI equation 

when 1 = − and the KPII equation when 1 = . Our goal is to research for a mapping relation between Eq. (1) 
and the KdV equation 

6 0.U UU U  + + =
                       

 (2) 

To connect solutions of Eq. (1) with those of Eq.(2), we introduce a new self-similar transformation in the form 

 ( ) ( ) ( ), , ( , , ), ( ) ( ) .u x y t t U x y t t t x   = +                (3) 
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where  satisfies  KdV  equation  (2),  and  are  four

undetermined functions of the specified variables. It should be mentioned that  , are called
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(4)        

Requiring ( , )U   to satisfy Eq. (2) and ( ), ,u x y t to be a solution of Eq.(1)，we get the set of equations 

0, 0,xx xxx xxxx  = = =                       (5)     

26 0,t + =                           (6)  

 2 2 2 0,+3 6x t y x x    + =                      (7)    
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  (8)
 

3.t x x  = =                          (9)                

It can be inferred from Eq. (5) and Eq. (7)
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(10) 

 

where ( ), ( ), ( ), ( )t t t t    are four undetermined functions of the specified variables t . Substituting Eq. (9) into 

Eqs.(5)–(8) and after some algebra yields 
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where 0 0 0 0, , ,    and 0 0,  are the free integration constants. Without loss of generality we can choose 

0 0 0 = = . 

According to the above, we get a SST (3) with expressions (11) and (12) for the KP equation, which may become 
into the KdV equation. Thus, the known solutions of the KdV equation can all be mapped to the solutions of the KP 
equation.  
 
It is worth mentioning that the similarity reduction that the KP equation can been reduced to the KdV equationand 
the Boussinesq equation except for to the first and second Painlevé equation by means of infinitesimal transformation 

(11)

the self-similar variables,  is called a amplitude amplification factor, is called the excitation background,

respectively.  It  should  also  be  emphasized  that  this  self-similar  transformation  is  analogous  to  the  self-similar 
analysis  technique  of  NLS  equation  type  equations,  but  the  key  point  here  is  to  add  an  additional  term,  of  which 
important value can be seen later.
 Substituting (3) into (1), we can get
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where k are an arbitrary real parameters, while 3.k = − By virtue of the SST (3) with Eqs.(11)-(12) and the single 

soliton (13) of the KdV equation (2), we find the single  self-similar parabolic solutions of the KP equation (1) as 
follows 
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Solution (14) involves six free parameters 0 0 0, , , , k    . Fig.1 and Fig. 2 displays the solution (14) of and KPI 

equation ( 2 1 = ) and the KPII equation ( 2 1 = ) in the ( , )x y -plane for fixing 0 0 00.05, 1, 1,  = = =  

0 03, 1, 0k = = = , respectively. 
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of Lie’s method [51]. In particular, the similarity reductions of the KP equation are thoroughly studied by the direct

reduction method [52-54]. But no above problems were yet involved.

3.  ROGUE-LIKE PARABOLIC-SOLITONS
  In  the  following,  we  use  the  SST  to  derive  the  self-similar  parabolic-solitons(PS),  which  here  are  called  as  the
  rogue-like PS, of the KP equation from various solitons existed in KdV equation.

    As the first application, we consider the single soliton solution of the KdV equation as follows[55]

(a)                                      (b)



    
(c)                              (d) 

Fig.1. (Color online.) Evolution of rogue-like parabolic soliton of KPI equation. 

The parameters is chosen as 2
0 0 0 01, 0.05, =1 3, 1, =0.k    = − = = =  (a) =0,t  (b) =2,t  (c) =4,t  (d) =6.t  

     

(a)                                    (b) 

    

(c)                                   (d)         
Fig. 2. (Color online.) Evolution of rogue-like single parabolic-soliton of KPII equation. 

The parameters is chosen as 2
0 0 0 01, 0.05, =1 3, 1, =0.k    = = = =  (a) t  =0  , (b) t  =2  , (c) t=4  , (d) t=6  . 

It can be seen from Figure 1 and Figure 2 that the amplitudes of the single parabolic-soliton of the KP equation(1), 
which is mapped from the soliton of the KdV equation (2), can be arbitrarily large and decaying quickly with time. 
They show shows a strong ‘short-lived’ characteristics similar to the rogue wave in NLS equation. Here we can call 
them the moving rogue-like parabolic soliton of the KP equation in the ( x, y) -plane. 
 
As the second application, we consider N-soliton solutions of the KdV equation (2). By means of the classical Hirota 
bilinear method, the N line solitons of can be expressed as[56]
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Similarly, under the SMT (3) with Eqs.(11) and Eq.(12), the self-similar N parabolic solitons of the KP equation (1) 
can be written as  
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N  =  2  

Because it involves six free parameters 0 0 0, , , ,     0 1 2 0, , ,k k  to control the different types of self-similar 

parabolic-solitons propagation. Figure 3 and Figure 4 display the solution (17) of the KPI equation ( 2 1 = − )  and 

the KPII equation ( 2 1 = ) in the ( , )x y -plane for fixing 0 0 00.05, 1, 1,  = = =  0 03, 3, 0k = = = , 

respectively.   

 
(a)                                    (b) 

where
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As another illustration, we discuss the double solitons of the KP equation (1) for solution (17) when  .



 
(c)                                   (d) 

Fig. 3. (Color online.) Contour plot of rogue-like double parabolic-soliton of KPI equation. The parameters are 

chosen as 2
0 0 0 0 1 2 01, =0.05, =1 =1, 1.2, 3, 2, 1.k k     = − = = = = −, (a) t  =0  , (b) t  =2  , (c) t=4  , (d) t=6  . 

  
                   

(a)                                  (b)
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t=4  t=6   
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(c)  (d)

Fig.4. (Color online.) Contour plot of rogue-like double parabolic-soliton of KPII equation.

The  parameters  are  chosen  as  (a)  ,  (b)  ,

(c)  , (d)  .
 It can also be seen from Figure 3 and Figure 4 that the amplitudes of the double parabolic-solitons of the KP 
equation(1), which is mapped from the double soliton of the KdV equation (2), can be arbitrarily large and decaying 
quickly with time. A  strong characteristics of the ‘short-lives’ similar  to the rogue wave cluster in NLS equation is 
manifested. Here we can call them the moving rogue-like double parabolic solitons of the KP equation in the (  x,  y)
-plane.

4.  CONCLUSION
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 To  summarize,  we  have  established  a  novel  SST  and  discovered  a  kinds  of  novel  rogue-like  parabolic solitons
of  the  KP  equation.  Our  results  show  also  definitively  that  the  amplitude  of  the  wave  controlled  by  several
parameters can be large and  decay  very quickly in a short time, so that it just describes the characteristics of rogue
waves.

The presented results could not directly be generalized to the other (2+1)-dimensional nonlinear evolution models,
but it can bring some enlightenment for studying various integrable and nonintegrable nonlinear models by using of
the  self-similar  transformation  technology.  The  significance  of  our findings  is  not  restricted  to  water  rogue  waves,
which can be applied to nonlinear optics and to other fields where the KP equation is the governing equation. We
surmise that new  experiments characterized by KP equation will be easier to implement and the predictions of the
present work could be verified.

REFERENCES
[1]  Onorato,  M.,  Residori,  S.,  Bortolozzo,  U.,  Montina,  A.,  Arecchi,  F.,  Rogue  waves  and  their  generating
  mechanisms in different physical contexts. Phys. Rep.  528(2013)47–89.

 

 

[3]Onorato M., Osborne, A. R., Serio, M., Bertone, S., Freak Waves in Random Oceanic Sea States. Phys. Rev. Lett.
  86(2001) 5831.
[4]Kharif, C., Pelinovsky, E., Slunyaev, A., Rogue Waves in the Ocean. Springer-Verlag, Berlin(2009).
[5]Adcock,  T.  A.  A.,  Taylor,  P.  H.:  The  physics  of  anomalous  (‘rogue’)  ocean  waves.  Rep.  Prog.

  Phys.77(2014)105901.
                

   

 

    

  

   

  

 

   

 

   

 

     

 

   

   

 

     

   

  

 

   

   

[2]Ginzburg, N. S., Rozental, R. M., Sergeev, A. S., Fedotov, A. E., Zotova, I. V., Tarakanov V. P.,  Generation of
  Rogue Waves in Gyrotrons Operating in the Regime of Developed Turbulence.  Phys. Rev. Lett.
  119(2017)034801.

[6]Dudley,  J.  M.,  Genty,  G.,  Eggleton,  B.  J.,  Harnessing  and  control  of  optical  rogue  waves  in  supercontinuum
  generation. Opt. Express  16(2008)3644–3651.
[7]Kasparian, J., Bejot , P., Wolf, J. P., Dudley, J.  M., Optical rogue wave statistics in laser filamentation. Opt.
  Express  17  (2009)12070–12075.
[8]Shukla, P. K., Moslem, W. M., Alfvénic rogue waves. Phys. Lett. A  376(12-13)(2012)1125  –1128.
[9]Tsai, Y. Y., Tsai, J. Y., Lin. I., Generation of acoustic rogue waves in dusty plasmas through three-dimensional
  particle focusing by distorted waveforms. Nature Phys.  12(6)(2016)573-577
[10]  Bludov, Y. V., Konotop, V. V., Akhmediev, N., Matter rogue waves. Phys. Rev. A  80(2009) 033610.
[11]  Vinayagam, P. S., Radha, R., Porsezian, K.,Taming rogue waves in vector Bose–Einstein condensates. Phys. Rev.
  E  88(2013)042906.
[12]  Ginzburg, N. S., Rozental, R. M., Sergeev, A. S., Fedotov, A. E., Zotova, I. V., Tarakanov, V. P., Generation of
  rogue waves in gyrotrons operating in the regime of developed turbulence. Phys. Rev. Lett.  119(2017) 034801.
[13]  Hohmann, R., Kuhl, U., Stockmann, H. J., Kaplan, L., Heller, E. J., Freak waves in the linear regime: a
  microwave study. Phys. Rev. Lett.  104  (2010)  093901.
[14]  Ganshin, A. N., Efimov, V. B., Kolmakov, G. V., Mezhov-Deglin, L. P., McClintock, P. V. E., Observation of an
  inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett.  101(2008)065303.
[15]  Stenflo, L., Marklund, M., Rogue waves in the atmosphere. J. Plasma Phys.  76(2010)293  –295.
[16]  Hammani, K., Kibler, B., Finot, C., Morin, P., Millot, G., Peregrine soliton generation and breakup in standard
  telecommunications fiber.  Opt. Lett.  36  (2011)112–114.
[17]  Shats, M., Punzmann, H., Xia, H., Capillary Rogue Waves. Phys. Rev. Lett.  104  (2010) 104503.
[18]  Yan, Z. Y., Vector financial rogue waves. Phys. Lett.  375(48)(2011)4274-4279.
[19]  Han, J. F., Liang, T., Duan, W. S., Possibility of the existence of the rogue wave and the super rogue wave in
  granular matter. Euro. Phys. J. E  42(2019)5
[20]  Copus, M. G., Camley, R. E., Creation of magnetic rogue waves. Phys. Rev. B,  102  (2020)220410(R).

https://d.wanfangdata.com.cn/periodical/5727814bbe63c66510b190b2ad000913
https://d.wanfangdata.com.cn/periodical/5727814bbe63c66510b190b2ad000913


[21] Soto-Crespo, J. M., Devine, N., Akhmediev, N., Integrable turbulence and rogue waves: breathers or solitons ?. 
Phys. Rev. Lett. 116(2016)103901. 

[22] Akhmediev, N., Dudley, J. M., Solli, D. R., Turitsyn, S. K., Recent progress in investigating optical rogue waves. 
J. Opt. 15(2013) 060201. 

[23] Ohta, Y., Yang, J. K., General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. 
Proc. R. Soc. Lond. Ser. A 468(2012)1716–1740. 

[24] Christian, K., Efim, P., Physical mechanisms of the rogue wave phenomenon. Euro. J. Mech. / B Fluids 
22(6)(2003) 603-634. 

[25] Wang L H, He J S, Xu H, Wang J, Porsezian K., Generation of higher-order rogue waves from multibreathers by 
double degeneracy in an optical fiber, Phys. Rev. E, 95(2017)042217. 

[26] Dudley, J. M., Dias, F., Erkintalo, M., Genty, G., Instabilities, breathers and rogue waves in optics. Nature Photo. 
8(2014)755–764. 

[27] Ankiewicz, A., Akhmediev, N., Rogue wave-type solutions of the mKdV equation and their relation to known 
NLSE rogue wave solutions. Nonlinear Dyn. 91(2018) 1931–1938.  

[28] Yin, H. M., Tian, B., Zhang, C.R., Du, X. X., Zhao, X. C., Optical breathers and rogue waves via the modulation 
instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. 
Nonlinear Dyn. 97 (2019)843–852.  

[29] Wang, Y. Y., Dai, C. Q., Zhou, G. Q., et al., Rogue wave and combined breather with repeatedly excited 
behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87(2017)67–73.  

[30] Temgoua, D. D. E., Tchoula Tchokonte, M. B., Maaza, M. et al., Contrast of optical activity and rogue wave 
propagation in chiral materials. Nonlinear Dyn. 95 (2019) 2691–2702. 

[31] Mukam, S.P.T., Souleymanou, A., Kuetche, V.K., Bouetou, T.B., Generalized Darboux transformation and 
parameterdependent rogue wave solutions to a nonlinear shrodinger system. Nonlinear Dyn. 
93(2)(2018)373–383. 

[32] Yu, W., Liu, W., Triki, H., Zhou, Q., Biswas, A., Belic, M.R., Control of dark and anti-dark solitons in the 
(2+1)-dimensional coupled nonlinear Schrodinger equations with perturbed dispersion and nonlinearity in a 
nonlinear optical system. Nonlinear Dyn. 97(2019) 471–483.  

[33] Dai, C. Q., Wang, Y. Y. & Zhang, J. F., Managements of scalar and vector rogue waves in a partially nonlocal 
nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102(2020)379–391. 

[34] Ye, Y., Liu, J., Bu, L. et al., Rogue waves and modulation instability in an extended Manakov system. Nonlinear 
Dyn. 102 (2020)1801–1812. 

[35] Mukam, S. P. T., Souleymanou, A., Kuetche, V. K. et al., Generalized Darboux transformation and 
parameter-dependent rogue wave solutions to a nonlinear Schrödinger system. Nonlinear Dyn. 93(2018)373–383. 

[36] Zhang, R. F. , Li, M. C., Yin, H.M., Rogue wave solutions and the bright and dark solitons of the 
(3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103(2021)1071–1079. 

[37] Birkholz, S., Nibbering, E. T. J., Spatiotemporal rogue events in optical multiple filamentation. Phys. Rev. Lett. 
111(2013)243903. 

[38] Solli, D. R. Ropers, C., Koonath, P., Jalali, B., Optical rogue waves. Nature 450(2007) 1054-1057. 
[39] Solli, D. R., Ropers, C., Jalali, B., Active control of rogue waves for stimulated supercontinu.um generation. 

Phys. Rev. Lett. 101(2008)233902 
[40] Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M., 

Observation of Kuznetsov-Ma soliton dynamics in optical fiber. Sci. Rep. 2(2012)463. 
[41] Chabchoub, A., Hoffmannn N. P., Akhmediev, N., Rogue wave observation in a water wave tank. Phys. Rev. 

Lett.106(2011) 204502. 
[42] Bailung, H., Sharma, S. K., Nakamura, Y., Observations of peregrine solitons in a multi- component plasma with 

negative ions. Phys. Rev. Lett. 107(2011)255005. 
[43] Xiong, H., Gan, J. H., Wu, Y., Kuznetsov-Ma Soliton dynamics based on the mechanical effect of light .Phys. 

Journal of Advance Research in Mathematics And Statistics ISSN: 2208-2409

Volume-11 | Issue-1 | Oct, 2024 107

https://elksslf9aa7d994b52c5f5dfc8b5e954ee4f22elksslcnki.casb.cuz.edu.cn/Detail/index/SJES_01/SJES36142955CE586A210D9EAC4752884F49


 
  
 

 
 

 
   
 

  
  
 

 
  

 
  
   

  
 

 
 

  
  

 
  
 

Journal of Advance Research in Mathematics And Statistics ISSN: 2208-2409

Volume-11 | Issue-1 | Oct, 2024 108

 

    

 

   

 

   

    

  

     

   

 

    

    

  

   

    

    

             

  

 

    

 

  

Rev. Lett.  119(2017)153901.
[44]  Kodama,Y.,  KP solitons in shallow water,  J. Phys. A: Math. Theor.  43(2010)434004.
[45]  Korteweg, D. J., and De Vries, G., On the change of form of long waves advancing in a rectangular canal and on
  a new type of long stationary waves, Philos. Mag.  39(1895)422.
[46]  Shrira, V., and Geogjaev V., What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng.
  Math.  67(2010)11.
[47]  Nikolkina, I., and  Didenkulova,I., Rogue waves in 2006-2011, Nat. Hazards Earth Syst. Sci.  11  (2011)2913.
[48]  Levi D.,  Levi-Civita theory for irrotational water waves in a one-dimensional channel and the complex
  Korteweg-de Vries equation,Teor. Mat. Fiz.  99(1994)435. [Theor. Math. Phys.  99  (1994)705.]
[49]  Abdel-Gawad,H. I.,Tantawy, M., and Elkhair. R. E. A., Waves Random Complex Media  26  (2016)397.
[50]  Ankiewicz, A.,Bokaeeyan, M., and Akhmediev N., Shallow-water rogue waves: An approach based on complex
  solutions of the Korteweg–de Vries equation, Phys.Rev.E  99  (2019) 050201(R).
[51]  Nishitani, T., and  Tajiri, M., Similarity Solutions of the Kadomtsev-Petviashvili Equation,  J. Phys. Soc. Jpn.  51
  (1982)2350.
[52]  Lou S.-Y., Similarity reductions of the KP equation by a direct method, J. Phys. A  24  (1991) 1455.
[53]  Lou, S.-Y.,  Ruan H.-Y., Chen D.-F., and Chen W.-Z.,  Similarity solutions of the Kadomtsev-  Petviashvili
  equation, J. Phys. A  23  (1990) L649.
[54]  Clarkson,  P.  A.,  Nonclassical  symmetry  reductions  for  the  Kadomtsev-Petviashvili  equation,  Physica  D  49
  (1991)257.
[55]  Zabusky, N. J., and Kruskal, M. D., Shallow-water waves, the Korteweg-deVries equation and solitons, Phys.
  Rev. Lett.  15  (1965)240.
[56]  Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett.
  27(1971)1192.

https://xueshu.baidu.com/usercenter/paper/show?paperid=36b068d44761412837585d40be4e52f4&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=5395c92f7a48388d14a47dbae8bb43f6&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=5395c92f7a48388d14a47dbae8bb43f6&site=xueshu_se
https://xueshu.baidu.com/s?wd=author:(T%20Nishitani)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(M%20Tajiri)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/usercenter/data/journal?cmd=jump&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited&wd=journaluri:(9ffa35ae7ec9cc11)%20Journal%20of%20the%20Physical%20Society%20of%20Japan

	[2] Ginzburg, N. S., Rozental, R. M., Sergeev, A. S., Fedotov, A. E., Zotova, I. V., Tarakanov V. P., Generation of Rogue Waves in Gyrotrons Operating in the Regime of Developed Turbulence. Phys. Rev. Lett. 119(2017)034801.
	[44] Kodama,Y., KP solitons in shallow water, J. Phys. A: Math. Theor. 43(2010)434004.
	[48] Levi D., Levi-Civita theory for irrotational water waves in a one-dimensional channel and the complex Korteweg-de Vries equation,Teor. Mat. Fiz. 99(1994)435. [Theor. Math. Phys. 99 (1994)705.]

