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This  study  presents  the  novel  Richardson  extrapolation  techniques  for  solving  numerical  approx-  imation  of  singularly
perturbed  convection-diffusion  problems  (SPCDP)  with  integral  boundary  conditions  (IBC).  A  numerical  approach  is
presented  using  an  upwind  finite  difference  scheme  a  piecewise-uniform  (Shishkin)  and  exponential  (eXp)  mesh.  To
handle  the  integral  boundary  con-  ditions,  the  trapezoidal  rule  is  applied.  The  parameter-uniform  error  bound  for  the
numerical derivative  is  established  which  leading  to  a  first-order  convergence  rate.  The  study  establishes  an  error  bound
for  numerical  solutions  and  determines  the  numerical  approximation  as  well  as  analyze  a  upwind  finite  difference  scheme
on  a  piecewise  uniform  mesh  (  Shishkin  mesh)  and  exponential  (eXp)  for  singularly  perturbed  convection  diffusion
equations  with  integral  boundary  conditions.  To  enhance  convergence  and  accuracy,  we  utilize  Richardson  extrapolation.
This  elevates  accuracy  from  O  N  −1  ln  N  to  O  N  −2  ln2  N  using  this  technique,  where  N  is  the  number  of  mesh  intervals.
Numerical  results  are  presented  to  validate  the  theoretical  findings,  demonstrating  the  effectiveness  and accuracy of the
proposed technique.
Subject  Classification:  AMS  65L11,  65L12,  65L20,  65L70,  65R20  AMS  65M06,  65M12,  65M15.
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ABSTRACT



 

Introduction 
This article investigates the convection-diffusion type’s singularly perturbed differential equations (SPDE) 
with integral boundary conditions (IBC). Integral boundary conditions are indeed neces- sary and commonly 
employed when studying SPCDP [35, 34, 1, 2, 4, 21]. Such boundary value problems (BVP) with IBC are 
commonly encountered in various domains, including electrochem- istry, thermoelasticity, heat conduction, 
etc. Only a few authors [1, 10, 18] have addressed SPDE with integral boundary conditions. Singular 
perturbation problems (SPPs) arising in the context of convection-diffusion problems with integral boundary 
conditions are prevalent across various fields of applied mathematics and engineering [3, 33]. BVPs with 
integral boundary conditions multiply- ing the leading derivative term by a small parameter ε are called 
singularly perturbed problems with integral boundary conditions. 
 
SPCDP exhibits a characteristic where a small parameter ε(0 < ε ≪ 1) multiplies some or all of the highest-
order terms in the differential equation. This parameter represents the degree of perturbation in the system and 
significantly influences the solution’s behavior. The Navier-Stokes equation, governing fluid flow dynamics, is 
an example of a SPCDP [32]. Introducing the small parameter ε, the equation becomes: 

 
where u and v represent velocity components along x and y directions, respectively, and pˆ denotes pressure. 
The Reynolds number Re is a dimensionless parameter relating to the fluid’s length scale, velocity scale, and 
kinematic viscosity. At large Reynolds numbers (Re), the equation transforms into a SPCDP with intergal 
boundary conditions. The diffusion terms  

 
 ε2, indicating their relatively smaller influence compared to the convective terms  
 
The small parameter ε signifies the existence of a boundary layer where the solution exhibits rapid 
variations.  SPCDPs involve significant contributions from both convection and diffusion, with ε amplifying 
either the convection or diffusion term in the equations. Finite Difference Methods (FDMs) are commonly 
used to approximate such solutions, though research on approximating their derivatives has been relatively 
limited. These approximations are valuable in certain applications like flux or flag calculations. SPPs, 
characterized by a small parameter ε(0 < ε ≪ 1) multiplying the highest derivative term, have been extensively 
studied in the field of differential equations [15, 30]. These problems exhibit rapid changes in the solution 
within specific domain regions. To obtain accurate numerical solutions for such problems, it is essential to 
develop appropriate approaches that provide error estimates independent of the small parameter. One of the 
most straightforward and practical approaches for developing such methods involves employing a category of 
piecewise uniform (Shishkin) mesh. Numerical methods for equations with non-local boundary conditions 
have also been widely investigated [2]. 
 
The Shishkin mesh and exponentially graded mesh are two effective techniques for solving SPCDPs [2, 21, 
34]. The Shishkin mesh is a piecewise-uniform mesh that incorporates two uniform segments, transitioning at a 
point determined by the singular perturbation parameter. This design allows for a refined mesh in regions 
where the solution exhibits sharp gradients or boundary layers, effectively balancing discretization errors 
across the entire domain. On the other hand, the expo- nentially graded mesh employs a geometric progression 
of mesh points, concentrating more points in areas where the solution varies rapidly, such as boundary 
layers[12]. This approach enables a more accurate representation of the solution in critical regions by 
decreasing mesh size exponen- tially towards these areas. By combining Richardson extrapolation with these 
two mesh types, the proposed technique aims to enhance the accuracy of numerical approximations for 
SPCDPs with integral boundary conditions. This innovative approach leverages the strengths of Richardson 
extrapolation and the adaptability of both mesh types, potentially yielding highly precise solutions even in the 
presence of challenging features such as boundary layers and singular perturbations [4]. Richardson 
extrapolation has been employed by various scholars as a technique to solve SPCDPs with non-local boundary 
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conditions. Relevant works include what is mentioned in the reference (for example [11, 14, 20, 23, 36]). The 
primary goal of this work is to present Richardson’s extrapolation to improve numerical solution accuracy and 
efficiency, as well as to investigate and analyze and post-processing method. This improvement in 
convergence rate is particularly targeted for prob- lems that are discretized using a Shishkin mesh [25]. The 
development of SPCDPs with non-local boundary conditions arises from the need to accurately model physical 
phenomena exhibiting both convective and diffusive behavior while considering non-local effects at the 
boundaries. Studying 
 
SPCDPs with non-local boundary conditions aims to accurately represent specific systems’ behavior,  
enhancing the methods’ accuracy, stability, and efficiency. The use of these techniques improves the 
effectiveness of investigating real-world events and allows for consistent results in a wide range of applications 
[7]. 
 
M. Cakir and G. M. Amiraliyev [4, 5] developed a second-order numerical method for SPPs with non-local 
boundary conditions, and investigated FDM for the same problem with non-local boundary conditions. 
Amiraliyev and Raja [1], focus on the well-posedness of SPDEs with non-local boundary conditions. These 
works will investigate solutions’ existence, uniqueness, and stability to ensure that the issue is well-posed. On 
the other hand, Kopteva and Stynes [17, 25, 36] focus on obtaining derivative approximations in SPCDPs that 
consider scale variations between the boundary layer region and the outer region. Their research addresses 
SPCDPs where the convection and diffusion terms exhibit significantly different magnitudes. They aim to 
accurately capture the solution behavior in different problem regions by appropriately scaling the derivatives.  
As the ε(0 < ε ≪ 1) approaches zero, the derivative solution of SPDE becomes unbounded. To approximate 
these derivatives accurately, scaling techniques are necessary. 
 
R. Mythili Priyadharshini and N. Ramanujam have focused on developing approximation tech- niques for 
computing scaled first and second derivatives, as detailed in their works [24, 27]. Recently, Desta Sodano [33] 
advanced this field by developing Richardson extrapolation for SPCDPs with non-local boundary conditions 
using scaled derivatives. 
 
One of the main objectives of their research is to address the numerical approximation of deriva- tives, 
especially in the context of problems with disparate scales or SPPs. They propose and develop innovative 
techniques for approximating derivatives. The research conducted by Desta Sodano [33] as well as Debela et 
al[12] presents a significant advancement in the field of numerical methods for solving SPCDPs with integral 
boundary conditions. Later, Debela and Duressa proposed a com- putational method for the class of SPCDE 
with IBC using the Richardson extrapolation technique in [10]. The main contribution of Debela and Duressa’s 

research is the development of a stable numerical method to effectively tackle SPCDPs with integral boundary 
conditions (IBC). 
 
This paper represents the inaugural analysis of Richardson extrapolation on the exponentially graded mesh 
applied to singularly perturbed parabolic convection-diffusion IBVPs through error decomposition after 
extrapolation.Initially, we address the SPCDP (2.1) on both a Shishkin mesh and an exponentially graded mesh 
using the classical implicit upwind finite difference scheme. We then demonstrate that this implicit upwind 
scheme achieves ε-uniform convergence with nearly first-order accuracy in the discrete supremum norm. 
Following this, we apply the Richardson extrapolation technique to enhance the nearly first-order convergence 
of the simple upwinding method, achieving an almost second-order convergence. 
 
Motivated by these considerations, we proposed using the Richardson extrapolation technique to solve 
SPCDPs with integral boundary conditions (2.1). To the best of our knowledge, the authors’ approach began 

with proposing an approximation method for scaled solution derivatives. We worked on problems with upwind 
schemes on a Shishkin mesh and exponentially graded mesh, obtaining approximately a first-order 
convergence rate. The authors most likely used Richardson extrapolation on the upwind finite difference 
method (FDM) within the Shishkin mesh as well as exponentially graded mesh to improve accuracy from 
almost first to almost second order. 
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∫ 

The rest of the article is organized as follows: Section 2, defines problems with non-local boundary conditions 
and presents analytical results. Section 3, introduces a numerical method based on an upwind FDM. Section 4, 
includes numerical examples to validate the theoretical results. In Section 5, the paper provides final 
conclusions. Throughout the paper, C refers to a generic constant independent of ε and discretization 
parameters N. 
 
PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS (IBC) AND SOME 
ANALYTICAL RESULTS 

 
where 0 < ε ≪ 1 is a singular perturbation parameter and the coefficient functions µ(x), η(x) are smooth, 
bounded and satisfy µ(x) ≥ α > 0, η(x) ≥ β > 0, x ∈ Ω¯ . The function g(x) is non-negative, and it satisfies  1 
g(x)dx < 1. The above problem satisfies the maximum principle and stability 
result. The detail proof is given in [1, 4, 29]. 
 
Analytical results 
To develop sharp bounds we write the analytical solution in the form ξ(x) = p(x) + q(x), where p(x) is the 
smooth component and q(x) is the singular component. The smooth component p(x) can be expressed as an 
asymptotic expansion p(x) = p0(x) + εp1(x) + ε2p2(x) satisfies the following equations  
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Theorem 2.1. Let ξ(x) be the solution of (2.1) and p0(x) be the solution of (2.5). Then, there exists a constant 
C > 0 such that for all x ∈ Ω¯ , we have 
      

 |ξ(x) − p0(x)| ≤ C 1 + e−α(1−x)/ε . (2.7) 
 

     x=0                                                          1 – τ                   x=1 
 

Figure 1: The Piecewise Uniform Mesh ΩN 
 
 
Proof. The detailed proof is given in [22]. 
 
Lemma 2.2. The solution ξ can be decomposed into the sum ξ = p + q, where p(x) is the smooth component 
and q(x) is the boundary component respectively. Furthermore, these components and their derivatives satisfy 
the following bounds: 

||p(k)(x) ||Ω¯ ≤ C 1 + ε(2−k) , 0 ≤ k ≤ 4, (2.8) 
 

||q(k)(x)|| ≤ Cε−ke−α(1−x)/ε, 0 ≤ k ≤ 4, ∀x ∈ Ω¯ . (2.9) 
 
Proof. The detail proof is given in [4, 13]. The detailed proof of the lemma can be established by utilizing 
appropriate barrier functions, making use of Theorem 1, and employing the proof technique described in the 
reference [13] (p. 46). 
 
NUMERICAL METHODS 
This section discusses the mesh selection strategy for solving the problem (2.1). We concentrate on the 
piecewise uniform mesh. The numerical computations use an upwind FDM, which accounts for non-local 
boundary conditions. 
 
Mesh Generation 
Construction of piecewise-uniform (Shishkin) mesh 
This mesh is extensively discussed in the references [8, 14, 19, 25]. To effectively handle the boundary layer at 
x = 1 in the SPCDPs with non-local boundary conditions (2.1), we utilize a piecewise-uniform mesh. This 
mesh includes a transition point at 1 − τ , where 

τ = min  1 , 2ε ln N  . 
 
To ensure numerical solvability, we choose the parameter τ based on a specific condition:

 
where N is significantly larger than  

 
 

 
A piecewise-uniform mesh is constructed by dividing the domain Ω = [0, 1] into two sub-intervals: 
[0, 1 − τ ] and [1 − τ, 1]. Each sub-interval is uniformly subdivided into N/2 intervals to create the mesh. To 
represent the mesh points in the interior and boundary regions of the Shishkin mesh, we 
define two sets:  , where x0 = 0 and xN = 1. The mesh widths hi = xi – xi−1. satisfy 

 
2 

 
2 
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Figure 2: The exponentially graded (exp) mesh distribution 
 

hi = H for i = 1, . . . , N/2 and hi = h for i = N/2 + 1, . . . , N . Now, according to the definition of xi’s, the spatial 
mesh sizes can be expressed as follows: 

H and h represent the spatial mesh sizes in [0, 1 − τ ] and [1 − τ, 1], respectively. The piecewise- uniform 
mesh, denoted as ΩN , is entirely defined by user-specified parameters N and τ . The interior 
mesh points are given by: 

           It is clear that                   .                     . The step between consecutive interior mesh points is given by 
 
hˆ = hi+1 + hi. while the step for boundary mesh points is ℏ = hi+1+hi . Interior mesh points step: 
hˆ = hi+1 + hi; Boundary mesh points step: ℏ = hi+1+hi . 
 
 
Construction of Exponentially Graded (eXp) mesh 
The eXp mesh, designed with an exponential grading strategy, will be specifically constructed to approximate 
the characteristics of the typical boundary layer function. To discretize the interval I = (0, 1) using the eXp 
mesh, we initialize the process by selecting an even number N > 2. The interval [0, 1] is divided into N sub-
intervals in order to construct an eXp mesh, denoted as Ii, using nodal points {xi}N . The size of each 
subinterval, hi = |xi − xi−1|, is determined by the difference between consecutive nodal points, 
where i = 1, . . . , N . 
 
We denote the space of polynomials with degree ≤ p as Pp(I). Next, we partition the domain Ω¯ into two 
subdomains, namely Ω¯ = Ω1 ∪ Ω2, where 
 

Ω1 = [0, xN/2−1] and Ω2 = [xN/2−1, 1]. 
 
In addition, we partition the subinterval Ω2 into N/2 + 1 equidistant mesh points, while the subin- terval Ω1 is 
divided into N/2 − 1 mesh points using the eXp mesh. To generate this mesh, we introduce a mesh-generating 
function ϕ that fulfills the condition ϕ(0) = 0. The specific form of the mesh generating function can be found 
in Constantinou [9] and Xenophontos [37] , as well as in the work of Podila et al. [26], where more detailed 
information is available. It is important to mention that we do not explicitly identify a transition point; rather, 
we generate the eXp mesh on the interval (0, 1) and consider xN/2−1 as our transition point for the transition. 
In order to discretize the interval I = (0, 1) using an exponentially graded mesh, we follow the steps outlined 
below: Step 1: Define the mesh-generating function ϕ(t) as: 

   
 

. . . 2  1 . . .  
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`where C is a constant independent of ε and N.  
Proof. The detailed proof can be found in [28].  
Prior to the extra polation analysis, we introduce a crucial lemma for the subsequent section. We define the 
piecewise (0,1)-Pade approximation of exp −αxi ε on the meshΩN 1 ,wherei=0,1,...,N, as the following mesh 
functions. 
 

 
 

Richardson extrapolation Technique 
This article aims to enhance the accuracy of the upwind scheme (3.5) using Richardson extrapolation, which 
has proven to improve numerical solutions for differential equations [31]. 
The ξN (x) is computed on the mesh ΩN and Ω2N . This mesh has 2N sub-intervals and the transition 
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Using the provided data, Tables 1 and 2 show calculated values of EN and SN for the scaled derivative of the 
solution εξ . Computation utilizes scaled discrete upwind method, shown in Examples 4.1 and 4.2. In Tables 3 
and 4, we can find precise maximum pointwise errors and convergence rates for Examples 4.1 and 4.2. These 
tables indicate nearly first-order convergence. Additionally, the tables summarize the maximum pointwise 
errors and convergence orders for the examples. As we review the results in Tables 3 and 4, we will notice a 
consistent decrease in the computed ε-uniform errors EN for Examples 4.1 and 4.2 as N increases. This 
confirms the ε-uniform convergence of the upwind scheme (3.5) both before and after extrapolation. 
 
We can see from the numerical solution plots in Figures 8 and ??, as well as the log-log plots of 
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(a) for N = 512 and ε = 2−5 using 4.1. (b) for N = 512 and ε = 2−5 using 4.2. 

Figure 4: Surface plot in Example 4.1 and 4.2 
 
 

(a) for N = 256 and ε = 2−5 using 4.1. (b) for N = 512 and ε = 2−5 using 4.2. 
Figure 5: Comparison of piecewise-uniform and extrapolated mesh in Example 4.1 and 4.2. 
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(a) for N = 512 and ε = 2−5 using 4.1. (b) for N = 512 and ε = 2−5 using 4.2. 

Figure 6: Surface plot for exponential (eXp) mesh in Example 4.1 and 4.2. 
 
 
 
10-2 
 
 
 
 
 
 
 
 
 
 
10-3 
 
 
 

(a) Before Extrapolation.                                                           (b) After Extrapolation. 
Figure 7: Log-log plot of maximum errors in Example 4.1.
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Figure 8: Graph of the numerical solution for N = 256 and ε = 2−5 in Example 

 
 

 
 
 
 

 
 

 
 
 
 

 
 

 
 
 
 

Figure 9: The log-log plot of the maximum pointwise errors using exponential (eXp) mesh for Example 4.2. 
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maximum pointwise errors in Figures 7 and 10, that Richardson extrapolation effectively increases the order of 
convergence of the upwind scheme. The upwind scheme’s order of convergence improves from O N −1 ln N to 
O N −2 ln2 N , which is consistent with the theoretical bounds established in Theorems 3.1 and 3.10. These 
experimental results validate the effectiveness of Richardson extrapolation. 
 
 
CONCLUSION 
We used the Richardson extrapolation applied to an upwind finite difference method on Shishkin mesh and 
exponential (eXp) mesh to solve singularly perturbed second-order convection-diffusion problems (2.1) with 
integral boundary conditions. The behavior of the continuous solution of the problem is investigated and 
proven to satisfy the continuous stability estimate. The integral boundary condition is addressed using 
numerical integration techniques, namely the trapezoidal rule.  
 
We discretized the domain using a piecewise-uniform mesh and exponential (eXp) by utilized the upwind 
finite difference scheme. To handle the integral boundary conditions, we employed the trapezoidal rule for 
numerical integration. The findings from these articles indicate a robust application of Richardson 
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extrapolation techniques across various types of singularly perturbed convection-diffusion problems, including 
those with integral and non-local boundary conditions. The use of Shishkin and other graded meshes is 
prevalent, showcasing their effectiveness in enhanc- ing numerical accuracy. The novel approach described in 
the query aligns well with these studies, particularly in its focus on integral boundary conditions and the 
combination of different mesh types. 
 

 
 
In addition, we utilized the Richardson extrapolation method to greatly enhance accuracy, resulting in nearly a 
second-order convergence rate. Our analysis revealed an improvement in convergence rate from about O 
(N−1lnN) to O (N −2 ln2 N) with respect to ε, leading to more dependable and precise solutions with fewer errors 
at the nodes. We presented two instances that illustrated the highest pointwise errors and convergence rates for 
different values of ε and N . The convergence rate improves approximately from first-order O (N−1) to nearly 
second-order O (N−2(ln N )2 concerning ε, as seen in the order of convergence: The overall result of our 
investigation suggests that using extrapolation decreases nodal errors and increases the numerical method’s 

convergence rate. The experimental results align with the theoretical bounds established in Theorems 3.10 and 
??. Two examples validate the effectiveness of the numerical method, displaying maximum pointwise errors 
and convergence rates for different ε and N. Finally, a comparison is made that demonstrates how post-
processing techniques produce better, more accurate results. Future work could extend this method to handle 
problems with two parameters, PDE, and equations with a discontinuous source term with non-local boundary 
conditions. The above method can be extended to problems. 
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Figure 10: The log-log plot of the maximum pointwise errors using Shishkin mesh for Example 4.2. 
 

With two parameter, partial differential equations and also equations with discontinuous source term with 
integral boundary conditions. 
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