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ABSTRACT

This study presents the novel Richardson extrapolation techniques for solving numerical approx- imation of singularly
perturbed convection-diffusion problems (SPCDP) with integral boundary conditions (IBC). A numerical approach is
presented using an upwind finite difference scheme a piecewise-uniform (Shishkin) and exponential (eXp) mesh. To
handle the integral boundary con- ditions, the trapezoidal rule is applied. The parameter-uniform error bound for the
numerical derivative is established which leading to a first-order convergence rate. The study establishes an error bound
for numerical solutions and determines the numerical approximation as well as analyze a upwind finite difference scheme
on a piecewise uniform mesh ( Shishkin mesh) and exponential (eXp) for singularly perturbed convection diffusion
equations with integral boundary conditions. To enhance convergence and accuracy, we utilize Richardson extrapolation.
This elevates accuracy from O N —1 In N to O N —2 In2 N using this technique, where N is the number of mesh intervals.
Numerical results are presented to validate the theoretical findings, demonstrating the effectiveness and accuracy of the
proposed technique.
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Introduction

This article investigates the convection-diffusion type’s singularly perturbed differential equations (SPDE)
with integral boundary conditions (IBC). Integral boundary conditions are indeed neces- sary and commonly
employed when studying SPCDP [35, 34, 1, 2, 4, 21]. Such boundary value problems (BVP) with IBC are
commonly encountered in various domains, including electrochem- istry, thermoelasticity, heat conduction,
etc. Only a few authors [1, 10, 18] have addressed SPDE with integral boundary conditions. Singular
perturbation problems (SPPs) arising in the context of convection-diffusion problems with integral boundary
conditions are prevalent across various fields of applied mathematics and engineering [3, 33]. BVPs with
integral boundary conditions multiply- ing the leading derivative term by a small parameter € are called

singularly perturbed problems with integral boundary conditions.

SPCDP exhibits a characteristic where a small parameter (0 < ¢ < 1) multiplies some or all of the highest-
order terms in the differential equation. This parameter represents the degree of perturbation in the system and
significantly influences the solution’s behavior. The Navier-Stokes equation, governing fluid flow dynamics, is
an example of a SPCDP [32]. Introducing the small parameter ¢, the equation becomes:

a2 a2 AT - - y
2 (d u d 'u..) N ()(u.‘ +p) N O(uv) _ ( 1 ) (1.1)

ox?  Oy? dx dy Re

where u and v represent velocity components along x and y directions, respectively, and p~ denotes pressure.
The Reynolds number Re is a dimensionless parameter relating to the fluid’s length scale, velocity scale, and
kinematic viscosity. At large Reynolds numbzers (Re), the equation transforms into a SPCDP with intergal
boundary conditions. The diffusion terms g '42L
x

2
and g—u’f are scaled by

€2, indicating their relatively smaller influence compared to the convective terms 9( u; +p) and 359%)

The small parameter ¢ signifies the existence of a boundary layer where the solution exhibits rapid

variations. SPCDPs involve significant contributions from both convection and diffusion, with & amplifying
either the convection or diffusion term in the equations. Finite Difference Methods (FDMs) are commonly
used to approximate such solutions, though research on approximating their derivatives has been relatively
limited. These approximations are valuable in certain applications like flux or flag calculations. SPPs,
characterized by a small parameter £(0 < ¢ < 1) multiplying the highest derivative term, have been extensively
studied in the field of differential equations [15, 30]. These problems exhibit rapid changes in the solution
within specific domain regions. To obtain accurate numerical solutions for such problems, it is essential to
develop appropriate approaches that provide error estimates independent of the small parameter. One of the
most straightforward and practical approaches for developing such methods involves employing a category of
piecewise uniform (Shishkin) mesh. Numerical methods for equations with non-local boundary conditions
have also been widely investigated [2].

The Shishkin mesh and exponentially graded mesh are two effective techniques for solving SPCDPs [2, 21,
34]. The Shishkin mesh is a piecewise-uniform mesh that incorporates two uniform segments, transitioning at a
point determined by the singular perturbation parameter. This design allows for a refined mesh in regions
where the solution exhibits sharp gradients or boundary layers, effectively balancing discretization errors
across the entire domain. On the other hand, the expo- nentially graded mesh employs a geometric progression
of mesh points, concentrating more points in areas where the solution varies rapidly, such as boundary
layers[12]. This approach enables a more accurate representation of the solution in critical regions by
decreasing mesh size exponen- tially towards these areas. By combining Richardson extrapolation with these
two mesh types, the proposed technique aims to enhance the accuracy of numerical approximations for
SPCDPs with integral boundary conditions. This innovative approach leverages the strengths of Richardson
extrapolation and the adaptability of both mesh types, potentially yielding highly precise solutions even in the
presence of challenging features such as boundary layers and singular perturbations [4]. Richardson

extrapolation has been employed by various scholars as a technique to solve SPCDPs with non-local boundary
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primary goal of this work is to present Richardson’s extrapolation to improve numerical solution accuracy and
efficiency, as well as to investigate and analyze and post-processing method. This improvement in
convergence rate is particularly targeted for prob- lems that are discretized using a Shishkin mesh [25]. The
development of SPCDPs with non-local boundary conditions arises from the need to accurately model physical
phenomena exhibiting both convective and diffusive behavior while considering non-local effects at the
boundaries. Studying

SPCDPs with non-local boundary conditions aims to accurately represent specific systems’ behavior,
enhancing the methods’ accuracy, stability, and efficiency. The use of these techniques improves the
effectiveness of investigating real-world events and allows for consistent results in a wide range of applications

[7].

M. Cakir and G. M. Amiraliyev [4, 5] developed a second-order numerical method for SPPs with non-local
boundary conditions, and investigated FDM for the same problem with non-local boundary conditions.
Amiraliyev and Raja [1], focus on the well-posedness of SPDEs with non-local boundary conditions. These
works will investigate solutions’ existence, uniqueness, and stability to ensure that the issue is well-posed. On
the other hand, Kopteva and Stynes [17, 25, 36] focus on obtaining derivative approximations in SPCDPs that
consider scale variations between the boundary layer region and the outer region. Their research addresses
SPCDPs where the convection and diffusion terms exhibit significantly different magnitudes. They aim to
accurately capture the solution behavior in different problem regions by appropriately scaling the derivatives.
As the (0 < ¢ < 1) approaches zero, the derivative solution of SPDE becomes unbounded. To approximate
these derivatives accurately, scaling techniques are necessary.

R. Mythili Priyadharshini and N. Ramanujam have focused on developing approximation tech- niques for
computing scaled first and second derivatives, as detailed in their works [24, 27]. Recently, Desta Sodano [33]
advanced this field by developing Richardson extrapolation for SPCDPs with non-local boundary conditions
using scaled derivatives.

One of the main objectives of their research is to address the numerical approximation of deriva- tives,
especially in the context of problems with disparate scales or SPPs. They propose and develop innovative
techniques for approximating derivatives. The research conducted by Desta Sodano [33] as well as Debela et
al[12] presents a significant advancement in the field of numerical methods for solving SPCDPs with integral
boundary conditions. Later, Debela and Duressa proposed a com- putational method for the class of SPCDE
with IBC using the Richardson extrapolation technique in [10]. The main contribution of Debela and Duressa’s
research is the development of a stable numerical method to effectively tackle SPCDPs with integral boundary
conditions (IBC).

This paper represents the inaugural analysis of Richardson extrapolation on the exponentially graded mesh
applied to singularly perturbed parabolic convection-diffusion IBVPs through error decomposition after
extrapolation.Initially, we address the SPCDP (2.1) on both a Shishkin mesh and an exponentially graded mesh
using the classical implicit upwind finite difference scheme. We then demonstrate that this implicit upwind
scheme achieves e-uniform convergence with nearly first-order accuracy in the discrete supremum norm.
Following this, we apply the Richardson extrapolation technique to enhance the nearly first-order convergence
of the simple upwinding method, achieving an almost second-order convergence.

Motivated by these considerations, we proposed using the Richardson extrapolation technique to solve
SPCDPs with integral boundary conditions (2.1). To the best of our knowledge, the authors’ approach began
with proposing an approximation method for scaled solution derivatives. We worked on problems with upwind
schemes on a Shishkin mesh and exponentially graded mesh, obtaining approximately a first-order
convergence rate. The authors most likely used Richardson extrapolation on the upwind finite difference
method (FDM) within the Shishkin mesh as well as exponentially graded mesh to improve accuracy from
almost first to almost second order.
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The rest of the article is organized as follows: Section 2, defines problems with non-local boundary conditions
and presents analytical results. Section 3, introduces a numerical method based on an upwind FDM. Section 4,
includes numerical examples to validate the theoretical results. In Section 5, the paper provides final
conclusions. Throughout the paper, C refers to a generic constant independent of & and discretization
parameters N.

PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS (IBC) AND SOME
ANALYTICAL RESULTS

{ LE(x) = —& (x) + p(x)€ (z) + n(x)é(x) = f(z), =z €,

(2.1)
€0) =%, &) —¢ [y g(@)&(a)dr = I

where 0 < ¢ «< 1 is a singular perturbation parameter and the coefficient functions p(x), n(x) are smooth,
bounded and satisfy pu(x) > o >0, n(x) > p >0, x € Q . The function g(x) is non-negative, and it satisfies 1
g(x)dx < 1. The above problem satisfies the maximum principle and stability

result. The detail prBof'is given in [1, 4, 29].

Analytical results

To develop sharp bounds we write the analytical solution in the form &(x) = p(x) + q(x), where p(x) is the
smooth component and q(x) is the singular component. The smooth component p(x) can be expressed as an
asymptotic expansion p(x) = p0(x) + ep1(x) + €2p2(x) satisfies the following equations

w(z)po(x) + n(z)po(z) = flz), po(0) = £(0), (2.2)
;a(;r:]pfl(;z.':] +n(z)py(x) = p;;(:;:}, p(0) =10, (2.3)
—ep, () + plx)py () + n(x)palx) = py(x),  pa(0) = 0. (2.4)

Hence, the smooth component of the solution satisfies

Lopo = flz),  pol0) = &,
Lopy = p;;._ p1(0) =10
Now, we must extend the scaling to the point where x = 1. Consequently, the differential operator

d? d

L = L1+ Ly gets converted to £ = L]+ L}, where reduced differential operator £j = —oaTHOT
dz2 dz

f
and £} = —Ju.lZd{— + 1.
Therefore, the boundary component of the solution satisfies the following conditions:
Eﬁ[?u = U
Ligi = E? lE Gi—j, for i=1,....m+1,
q;(0) = —p;(1) + 1o + .ju glr)é(z)de, for j=0,...,3,

lim, o gi(z) =0,

m+1

WG9 idshémt daugiocadi (2 28
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Theorem 2.1. Let £(x) be the solution of (2.1) and p0(x) be the solution of (2.5). Then, there exists a constant
C > 0 such that for all x € Q , we have

IE(x) —pO0(x)| < C 1 +e—a(l—x)c. 2.7

Nl
Nl

x=0 1-7 x=1

Figure 1: The Piecewise Uniform Mesh QN

Proof. The detailed proof is given in [22].

Lemma 2.2. The solution & can be decomposed into the sum & = p + q, where p(x) is the smooth component

and q(x) is the boundary component respectively. Furthermore, these components and their derivatives satisfy
the following bounds:
Ip®(x) IQ <C [1 + a(z‘kﬂ , 0<k<4, (2.8)

lg®()f < Ce—fe ™% 0<k=<4,  vxeQ .  (29)

Proof. The detail proof is given in [4, 13]. The detailed proof of the lemma can be established by utilizing
appropriate barrier functions, making use of Theorem 1, and employing the proof technique described in the
reference [13] (p. 46).

NUMERICAL METHODS

This section discusses the mesh selection strategy for solving the problem (2.1). We concentrate on the
piecewise uniform mesh. The numerical computations use an upwind FDM, which accounts for non-local
boundary conditions.

Mesh Generation

Construction of piecewise-uniform (Shishkin) mesh

This mesh is extensively discussed in the references [8, 14, 19, 25]. To effectively handle the boundary layer at
x = 1 in the SPCDPs with non-local boundary conditions (2.1), we utilize a piecewise-uniform mesh. This
mesh includes a transition point at 1 — T, where

t=min{i,§lnN}.
7 a

To ensure numerical solvability, we choose the parameter t based on a specific condition:

2e
=—1InN :
T=g (3.1)

where N is significantly larger than '.
A piecewise-uniform mesh is constructed by dividing the domain Q = [0, 1] into two sub-intervals:
[0,1 —t]and[1 — 7, 1]. Each sub-interval is uniformly subdivided into N/2 intervals to create the mesh. To

represent the mesh points in the interior and boundary regions of the Shishkin mesh, we
define two sets: QN _ { ) }N , where xo = 0 and xy = 1. The mesh widths h; = x; — x;-1. satisfy
1 = Wiri=0
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Figure 2: The exponentially graded (exp) mesh distribution

hi=Hfori=1,...,N2andhi=hfori=N/2+1,...,N.Now, according to the definition of x;’s, the spatial
mesh sizes can be expressed as follows:

2(1 — N
Hz{Tﬂ for i=1--,5,
h-,: = j- I ¢ . N . N (32)
.’.-—E._ or ﬁ—(?)"‘ YA S

H and h represent the spatial mesh sizes in [0, 1 —t ] and [1 — 1, 1], respectively. The piecewise- uniform
mesh, denoted as QN , is entirely defined by user-specified parameters N and t . The interior
mesh points are given by:

Q"l\" ={z;:1<i<N/2} U {z; :N/24+1<i< N}. (3.3)
It is clear that ON __. 1V . The step between consecutive interior mesh points is given b
O = {} Ly Moo i i v b
h™ = hiy; + h;. while the step for boundary mesh points is # = h;:i+h; . Interior mesh points step:
h™ = hiy; + h;; Boundary mesh points step: # = hi+1+hi . 2
—_—

Construction of Exponentially Graded (eXp) mesh

The eXp mesh, designed with an exponential grading strategy, will be specifically constructed to approximate
the characteristics of the typical boundary layer function. To discretize the interval I = (0, 1) using the eXp
mesh, we initialize the process by selecting an even number N > 2. The interval [0, 1] is divided into N sub-
intervals in order to construct an eXp mesh, denoted as Ii, using nodal points {xi}N . The size of each
subinterval, hi = [xi — xi—1|, is determined by the difference between consecutive nodal points,
wherei=1,...,N.

We denote the space of polynomials with degree < p as Pp(I). Next, we partition the domain Q into two
subdomains, namely Q = Q; U Q», where

Qi =[0,xn21] and Q> =[xnp1, 1]

In addition, we partition the subinterval Q; into N/2 + 1 equidistant mesh points, while the subin- terval Q; is
divided into N/2 — 1 mesh points using the eXp mesh. To generate this mesh, we introduce a mesh-generating
function ¢ that fulfills the condition ¢(0) = 0. The specific form of the mesh generating function can be found
in Constantinou [9] and Xenophontos [37] , as well as in the work of Podila et al. [26], where more detailed
information is available. It is important to mention that we do not explicitly identify a transition point; rather,
we generate the eXp mesh on the interval (0, 1) and consider xXN/2—1 as our transition point for the transition.
In order to discretize the interval I = (0, 1) using an exponentially graded mesh, we follow the steps outlined
below: Step 1: Define the mesh-generating function ¢(t) as:
1

1
Cb(t) =—1In [1 — ZXP,Et] s te [O, 5 — N:|
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a
where e =1—exp| ————
X, ! ( (p+1)e

[0, N/2 — 1] using the formmla:

. Ir
! =%{y-1)¢ (%) -;=n,._.,%—1.

). Step 20 Compute the nodal points o in the subinterval

Here, = iz a small value for munerical stability, 2 is a constant, p is the degree of polyonomials in
the space Pyil), and i =0, ... . N/2 - 1.

Step 3: Compute the mesh points o; on the interval T of an exponential-type mesh are as follows:

o
5 -1 N
2k o k=0.....—+1.
g = 1+ N v 2 +4 (3.4)
l—a%t . k=—+1... N
Trn_11 5 1

2.2, Numeriead Scheme

The discrete problem corresponding to (2.1) is as follows: Find Z%(x;) such that

CNZN(x:) = =282 ZN (@) + p(z ) D™ ZN(25) + n(x) ZN(x23) = fla), Wy € v,

) i . a1 ) EN (i a V2N (2 (3.5)
Zh(“} _ Ef.h zh {Tp"} _ EZ:'“‘:]_ H{JI l:' {I 12} + g{f ]I E‘Li}h’. - 12‘
where the first and second-order finite differences are defined as
ZN{w ) — ZN(w
.D_EN{.'J':{}= {Jt} {Jt 1]'_-
hiy
§2ZN (1) = —2e ZN(wisn) — ZN(as)  ZN(ai) — ZV(2i)
= hi + fieq hitl R .

Note: The above numerical scheme satisfies the discrete masinuun principle and discrete stability
result. Hence, the matrix associated with this scheme is an M-Matrix.
Fguation (3.5) can be expressed as the following system of algebraic equations:

—r7 ZN 4 ZN 4 ZN = fi, i=1,...,N -1,

ol ) ZN (2 4) + alz) ZY (x;) (3.6)

Z¥0) = & Z¥(an) - X, . ha = o,

where the coeflicients in the upwind finite difference scheme are given by

_ ( —2s I )
o= - \
‘ hipa(hy +higa) iy

de 2e 1z
S £ L . :?LH
S Y oy Sy B (R oy B +”“) ' (3.7)
+ D=
f"-

a Bipr (s + higy)

Theorem 3.1. Let £ be the solution of (2.1) and Z% be the numerical solution defined by (3.5),
Then, the following inequality holds:

|&(2i) = Z%(2;)| <CN"'In N, va; € OV
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‘where C is a constant independent of € and N.

Proof. The detailed proof can be found in [28].

Prior to the extra polation analysis, we introduce a crucial lemma for the subsequent section. We define the
piecewise (0,1)-Pade approximation of exp —oxi € on the meshQN 1 ,wherei=0,1,...,N, as the following mesh
functions.

by . by
s,_H(H%j_ s-,._[[(u%)
k=1 =

k=1 -

— ¥

then 5; = exp| ) wwhere by convection Sy = 5, = 1.

The numerical scheme for an upwind scheme (3.5) on Q% can be expressed as follows: For 1 =

1..... N-1
PN —2= Zig— 2 Zi—Zi Zi— Zi
chzh (i) = +l — L+ i SiT Sl b Z;
hi + hi fivt e H;
. ovhiigy
Si(1+ ity g, i !
N . —2e g o &5
L8 = e ; —S,—T + fi S',;—T + 155,
e e (1+—=) (1+—=)
" g(zi1)S(zi1) + (i) S(x:)
gloi_1)S(xi— glz; )5 (x;
Slay) -y T Sl -
i=1 -
Lemma 3.2, The mesh functions 5; satisfy the following property fori = 1,... N —1: there exists
a positive constand O such that
; C p C
£Ns = S; and £VS§'= —— 8§ (3.8)
£+ ahy 2e + oehy
Furthermore, for i = N/2+1,..., N — 1, there exists a constant O such that
£V8 = =S, and Vs = Ls) (3.9)

Proof. The detailed proof can be found in [25]

Richardson extrapolation Technique

This article aims to enhance the accuracy of the upwind scheme (3.5) using Richardson extrapolation, which
has proven to improve numerical solutions for differential equations [31].

The &N (x) is computed on the mesh QN and Q2N . This mesh has 2N sub-intervals and the transition

point 1 — 7 as Q. The two meshes are interconnected, that is, Q) = {z;} € Q2" = {3;}. Thus,
on Q%N, the following conditions hold: #; — #;_1 = H/2 for &; € [0,1 — 7) and x; — ;1 = h/2 for
T € (1 - T, l}.

Clearly Q7" be the mesh obtained by bisecting the mesh intervals in Q)" and let £V represent the
approximation of the solution on QEN . Thus, Q{V is a subset of Q?N , and similarly, Qf is a subset
of Q3N We proved that

(&(zi) — ZN(2;)) =CN~'InN + Ry(z;), = €, (3.10)
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where C is a constant independent of mesh size h; and 2. The remainder term Ry (a;) < (th.

Z | @m0 - 0r 0 < cn ce i

Given that equation (3.10) holds for all k # 0, we can deduce the following relation for x; ﬂiw:
(E(a;) — 2V (x;)) = ON"HIn N)* + Ry(;), (3.11)

where Ry (z;) represents the remainder error term, and Ry (x;) = O(h?).

R . o - 2= Y . A .
Now, from the definition of transition parameters 7 = — o N and ln N = 5 Substituting In N
i

into (3.10), we find that 05 is solved using the same 1 — 7 transition point:

kT

ele)) — 2%(2)) = C N]‘l(z) 4 Row(d:), forall & e 02V, (3.12)

where Z2V denotes the solution of discrete problem (3.5) and where the remainders R,y (x;) are
ol N"'n? V). Then multiply equation (3.12) by 2, then we get
O (rrr

2%(:) - 222V (2) = — (52

N )+2Rwr; D, e (3.13)
d

Subtracting equation (3.13) from equation (3.10) or eliminating the initial term &{N—') from both
equations, we acguire:

(i) — (222" (2) — Z™(25)) = Rw(x:) — 2Ran (i), 2: € O (3.14)

which is equal to o{ N ! In® N).

The truncation error of the remainder Ry originates [rom combining the frst-order derivative
difference scheme and the trapezoidal rule’s truncation error lor a non-uniform mesh. Thus, the
approximation for the truncation ervor of the remainder Ry from equation (3.14) is as follows:

Z—e=N1laN+ON?.

This suggests that the Richardson extrapolation technigque enhances the convergence rate [rom
almaost fivst-order to almost second-order,

F.3.1. Diserete solubion decomposition

Analogous to the continuous solution, we can decompose the discrete solution Z into the following
sum ZY(x;) = PY(x;) + Q™ (2;), where PV represents the smooth component and satisfies the
following discrete problems:

{ CNPN(x5) = flay), xe ) (3.15)
. b dd
PY(0) =p(0), PY{axn)=p(1),
and (" represents the boundary component, and satisfies the following discrete problem:
L"""QN ) =0, ey
{ ' : ! (3.16)
QY(0) =q(0), Q¥(xy) = q(1).
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Now, we can express the error as follows: (2 — ) (z) = (PY — p) (2:)+ (@Y — ¢) (2:). Following
a similar approach, we define Z*V () = P*¥ (x,) + Q*¥(x,) to continue the decomposition. Thus,
the errar in the discrete solution is presented by decomposing the solution Z% over I!f as deseribed
in equations {3.15) and {3.1G):

(2% =€) () = (PY = p) (x:) + (@™ — q) ()

amnd
(22N =€) (x:) = (PN = p) (x) + (@Y - q) (z.).

S.9.20 Ertrapolated solution of Py
Let's first consider the error in the smooth part of £, denoted by PN (x;) — p{x;). The lemma
provides the hound for the truncation error p.

Lemma 3.3. Assuming ¢ < N™! and for all x; € Q, we can caleulate the local truncation error
for the smooth componend p in the following way:

C ; 1 "
cNPY = i) = O(HY) + Slx)(Tipr — m)p (x).
Proof. Baszed on the bounds established in [22], where |?}{M ",|| = {f{l+52""} for 0 < & < 4 and all

x € [0, 1], we can use Lemma 2.2 for derivative bounds on p, along with Taylor's series expansion,
to derive the following equation:

E.NI[FN— v E a H'_i'_!.} _ -}Il'j! h “} iy _ Ef}i'_i}
.F‘.}I:J'I] ?E 1—16_-}1‘;1[}:'1:' ;{k’ﬂ 2.“‘( h.}{ﬂ'} Fl[ } [3{'1] EJ 5[T£]

where x1 € (#,@¢11) and ya2 € (31, 3.

For every x in (2, E is defined as a non-local solution to the boundary value problem using Keller's
classical approach [16].

The function E is defined as the solution to the following BVP:

CE(x)=®(x), E0)=FE(1)=0, ¥Yzreil (3.17)

where ®{x) is given by $(x) = %jf,l[:r.',][r,-.,_] — )y ().

Now, let g € C%[0,1] and p € C[0,1] with their derivatives bounded as in (2.8). As a result,
@ = %[0, 1] satisfies || < € and &' (x) < . Therefore, E can be decomposed into £ = i + A,
where i and A represent the smooth and boundary parts of E| respectively.

Now by using (2.8), we have the following bounds:

[pEz)s €€ (1+%R), 0<k<3, (318
|AENz)| = CemRe ol D= k<3, Wrell
which becomes ( (0)
Cipfx) = ®(x),  w(0) = A0) =0,
. (3.19)
LA(z) =10, wizy)=—A1).

: : . 1 "
Therefore, we have shown that £Y(PY — p)(z,) = O(H?) + E;:(rij[mfﬂ —x;)p (x) for all x; e 2.

The error in the smooth component PV is determined in the following Lenvma.
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Lemma 3.4. Under assumptions £ < N~ We have
PY(x;) — plz) = HE(z,) + O(N %), ¥z, € [0,1 — 7]

Proof Given x; € (00, 1) fixed, Taylor's expansion yields:

Nyl £ iy pid g ) A%
WL — L) w(ay) < E{h"l +hijllm|| + T[hm + hJ”@” :

Furthermore, using (3.18), we find:

(£ — Ch(a)| < ;me + hi) + c.'“':;”"'} (Riv1 +hi) < Clhipr + ) + Clhip + hy) < CH.

=

From the truncation error, we have:
L) = Coled) + £¥0(x) — Coo(ad) = Loz + O(H).
Thus, Hf.'r“'-z,-h[r;-] = H®(z,) + O{H*). Considering that h, < H, Lemma 3.3 vields

O(H?) + gp(z:)(higr + ha)p"(a;) — H®(x;) — O(H?), € (0,1—7),
(#ip1 — 3y — H)B(z) + O(H?) ;€ (1-r1,1),

LN (PN —p)(x)-HLYy(x) = {

(3.20)
£Y(PY —p— Hy) () = O(H*) for = € (0,1 — 7], (3.21)
LY (PY —p— HLVY) (2) = O(H?) + (h — H)®(z,).for ;€ (1 —7,1). (3.22)
Now, let us define discrete mesh functions
| ar—2 1 ah ! : .
M;=Cy |N {1+.1-,-;|+HH 14 for i=1,....N—1.
k=1 2=

Then, apply the difference operators on Af; by using Lemma 3.2 and = < N lfor0<i< N/2, it

follows that "
i L
ITi— (1 + 2—)

LM = O
- max {z, b}

(3.23)

and for N/2 < i< N, .
VM, = Oy HE (3.24)

It is easy to check that My = 0 = |PY(0) — p{0) — H(0)| and My = Gy = [PY(1) — p(1) — Hu(1)].
By choosing an adequately large value for Oy, it effectively operates as a barrier function denoted
by M, for + [P'""'{ﬁu:-} — plz;) — Hurz; :I] . Employing the discrete maximnm principle to the barrier
function M, we subsequently ascertain:

M; = PY(x)) — plz;) — Hy(x), = € (0,1—71).
Thus, for i =1,..., N/2, we have:

PY () — plx; — Hﬁir,n\ < |PY(x) — pla) — HMz)|+ [Hy(z)| < M+2N 7 |o(z)| < ONTL

where we used E = B+ A
MNow we can show that extrapolation improves the aceuracy of PY on (0,1 — 7| interval.
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Lemma 3.5. For all r; £ [0,1 — 7], we have achieved second-order convergence for the smooth

cenTi T el
Ip{as) — (P2 () — PY¥(2:)) | < ON72,

where C is a constant.
Proof. Let x; € [0,1 - 7]. Since the subinterval mesh width of ﬂf‘v is half of those of !I{“: and the
function EV{.} depends on 7, we utilize Lemma 5.4 to deduce:

PY — plx;) = HE(x;) + O({N77).
Similarly, by maintaining a constant value for 7 on the mesh !I.'!f'"": wie obtain:
PN _p(x) = %E{m +O(N . (3.25)
Using the extrapolation formulas (3.14), 3.4, and (3.25), we arrive to the following conclusion:
plr) — (PP (x) — PY(x,)) = O(N7?), for 1<i<N/2
The subsequent lemima demonstrates the ervor of F""‘rl[:r.',] after extrapolating over (1 — 7, 1].
Lemma 3.6. Under assumptions ¢ < N~ Forall x, £ [1 — 7, 1],
|pla) — (PP (2:) = PN(a))| < CINTHIn N)?).

for some constant C.
Proof. We define the function &{x) on [1 — 7, 1] by

LG(z)=0.G(1 —7(xy)) =1,G(1) =0, for (1-7.1).

Within the domain (3, we introduce a discrete approximation GN

of G as outlined helow:
LGNz =0,G(1 — rlax)) = L.GY(1) =0, for N/2<i< N,
For the convergence of the upwind scheme, we have

G-GN<ON'InN for N/2<i<N. (3.26)

We define p(z) = PY(z,) — p(z;) — (HE(1- 1)) G(x;) for N/2<i<N.
Then @{zy2) = O(N ), p(zy) =0 and

£¥p(x) = O(ke) + O(H) = (N~} (I N)?).

Using a barrier function of the form C(1 + z; )N~ '{In N}, we obtain the following estimate for

an le(z)] < ON"HInN)?, for N/2<i< N (3.27)
Furthermore, noticing that {::'l[l —7)| = O, we can dednce the following relationship:
PY{x) — plz) = (Hf";[l - :r]] () + O(N Y N2 (3.28)
Similarly, on the mesh 2%V one has
PN _plx;) = {%jﬁ'(l — )Gz + (N~ YIn N)), for N/2<i<2N. (3.29)

Now combining (3.28) and (3.29), we obtain
plz) — (2PN — PY) (z) = 2(p— P} (z:)) — (p— PN)(z) = O(N " Y{In N)?), for N/2<i< N
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3.2.3. Ertrapolated solution of Q™
The Richardson extrapolation is now utilized to approximate C}N in £ in the following lemmas.
The error Q¥ (x;) — g(z;) is computed separately in the sub-intervals [0, 1 — 7] and [1 — 7, 1].

I JI".'-

Lemma 3.7. For all x; € (0,1 — 7], we have

|alz) - (2Q* - @¥) (x)] < ON72
Proof. Referring to (Theorem 1 of Cen [G]), we obtain:

lgi — QY| < ;| + |@F| < Ce™™=/* + O,

By emploving Lemma 3.2, it is straightforward to establish that for N/2 <:¢ < N,
o — QY| < ONTE

To study the impact of extrapolation (1 — 7, 1), we introduce the function F over the interval
1 —7,1] through a BVP with IBC boundary conditions. Suppose F is the solution of the following
BVPs with IBC:

Flry) = %jil{_’t‘,]q‘” (z), ze(l-71),
Fi1 - r{xx)) = F{1) = 0.

(3.30)

Then, F depends upon 1 and independent of N, Now using the fact that ||F'{l'.l}|| < (=71, we have
forl<e=1-7 .
|F*Nz)|| < Cefe = k=1,2,3,4. (3.31)

Lemma 3.8. For all v; € [1 — 7, 1], we have
QY (x) —glz)) = (N In N)F(x,) + (N "*{In N)?). (3.32)

Proof. The detailed proof is given [25, 36].
We will now illustrate how extrapolation improves the accuracy of If,}'“‘l[ i) for @, within the range
of z; € [1—7,1].

Lemma 3.9. For some constant O and for all x; £ [1 — 7, 1], we have
gla:) — (2Q*¥(2) — QV(w)) | £ OCN (I N,

Proof. Assuming that z; € [1—7, 1|, we can reconfigure equation {3.32) to more explicitly showcase
its reliance on the selection of both & and 7.

OViz) — qlz) = N In NF(z;) + O{N " Y{InN}) = N~ ( TVFlz) + (N ’{—}-) (3.33)

_.

Similarly,
; T g T
Q*N(x) —glx) = N7Y 5 JF(z)+ 0 (h 2 — ]ﬂ) (3.34)
Given that 07" is solved utilizing the identical transition point 1 — 7, it can be concluded that:
Q¥ () - alx) = (2N) A )F () + 0 (V150 (3.35)

Replacing the first term (3.33) and (3.34), we have
glx:) — (20°N(z) — Q) £ ON2{In N)?

Henee, the desired resualt is reguired.
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2.3.4. Convergence result of the solution Z™
The main result of this paper is a theorem that proves a second-order error estimate, which is
s-uniform, for the solution obtained through Richardson extrapolation.

Theorem 3.10. (Error after extrapelation) Assume that = < N7, then there exisis a positive
constant O such that:

le(z) — (22*Y (2) — ZV(2))| < NN for a2, e QY.

where O are positive constants,
Proof.

T
For each x; £ {1V, we have

i) — (22 (a) — Z¥(x)) = play) — (2PN (@) — PV (2) + glz) — (2Q% (2) — @V (2)) -

We obtain the desired result by combining the results of Lemmas 3.5, 3.6 for the smooth component
and 3.7, 3.8, 80 for the layer component of the above equations.

4. Numerical Examples, Results and Discussion

We perform nmumerical tests to confirm theoretical findings, employing model problems from equa-
tioms (2.1) and utilizing the momerical scheme in equation {3.5). This section presents two examples,
and since exact solutions are unknown, we assess the maximnm point-wise error using the donble
mesh principle [2, 25, 28], To assess the accuracy of our approach, we compute the exact maximum
pointwisze absolute error provided by:

EN (D" Z)= max |DZ(x,) — £ (x,
eact | ) “1,_;‘;},_3';‘.-| () — £ (2]

For each N, we define s-uniform maximuom errors at the nodes as:
Elsaer( D™ Z) = max Eaa (D™ Z.)

The caleulation of the maximum pointwise donble-mesh differences is given as follows:
EN(eD~Z) = |(D~ZY — D~ Z2*V)|.

where ZV and Z*V represent the mumerical solutions acquired with & and 2N mesh intervals,
respectively. We compute the s-uniform maxinmum pointwise double-mesh differences, denoted as

EN(eD™Z) = max EV.
-

In this case, iy indicates the set of integer values examined for the number of mesh intervals. We
define the computed corresponding s-uniform numerical convergence rates for all N as:

exip

N EN N Ecup
SN = log2 (E"”"') and  S2,, = log?2 EE""} ) .

Far each N in the range Ry = G4, 128, 2506, 512, 1024, 2(428 such that both N and 2N are in the set,
we calculate s-uniform maximnm pointwise double-mesh differences EY (2D~ Z). The numerical
results are shown for £ valnes from = € K, = {2'2”.. ., 27 gl }, where K. define the ranges for
the singular perturbation parameter.
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Example 4.1. Consuder the following SPP:

=€ (2)+(1+2) (z) = (1—2)%, z€,

with boundary conditions

l
§0)=0, £1)—= [ Zglz)dr=1.
o ' 0 2

09 - x :

08F Numerical solution
—— =2t

07 £ =003125

06

0.5

03

02r

0.1

Figure 3: Graph of the numerical solution for N = 256 and ¢ = 277 in Example 4.1.

Example 4.2. Consuder the followwng SPP:

et (x)+E(2)=1, zef,

with boundary conditions

-

15
£(0) = 0, 5(1_]—5/ f—)({;.-}d.r—u
0

Using the provided data, Tables 1 and 2 show calculated values of EN and SN for the scaled derivative of the
solution &£ . Computation utilizes scaled discrete upwind method, shown in Examples 4.1 and 4.2. In Tables 3
and 4, we can find precise maximum pointwise errors and convergence rates for Examples 4.1 and 4.2. These
tables indicate nearly first-order convergence. Additionally, the tables summarize the maximum pointwise
errors and convergence orders for the examples. As we review the results in Tables 3 and 4, we will notice a
consistent decrease in the computed e-uniform errors EN for Examples 4.1 and 4.2 as N increases. This
confirms the e-uniform convergence of the upwind scheme (3.5) both before and after extrapolation.

We can see from the numerical solution plots in Figures 8 and ??, as well as the log-log plots of
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Surface Plot for n = 512 Surface Plot of Numerical Solution for n = 512

100 04 f 100

g 0.2 : 0.2
Iteration 0 o X Iteration 0 o X

(a) for N=512 and e =2—5using4.1.  (b) for N=512 and € = 2—5 using 4.2.
Figure 4: Surface plot in Example 4.1 and 4.2

1.2 T T T T

0.9

~—©— Piecewise-Uniform Mesh ==& Piecewise-Uniform Mesh

08|
1t —©— Extrapolated Solution T

~—©— Extrapolated Solution

071

06

05T
uwr

04r

037

02

01r

0 A D 0 e n L L L L L n

0 0j1 0i2 0;3 014 0?5 0;6 017 O,IB 079 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 01.9 1
X X
(a) for N=256 and € =2—5 using4.1.  (b) for N =512 and £ = 2—5 using 4.2.
Figure 5: Comparison of piecewise-uniform and extrapolated mesh in Example 4.1 and 4.2.
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Surface Plot for n = 512

09
125 125 04
15 1 07
0.8 08 06
wn 0.6 4 5 06
05
0.4 0.4
04
0.2 4 0.2
5 03
[ E
150 300 02
1 1
0.1
100
Iteration 0 o 0:2 % Iteration 0 o X g
(a) for N=512 and e =2-5 using4.1.  (b) for N=1512 and £ = 2—5 using 4.2.
Figure 6: Surface plot for exponential (eXp) mesh in Example 4.1 and 4.2.
10-2 o Maximum pointwise errors in loglog plot ,
' e -pm = =2"°
—=-O(N™) -
—— =27 \ =i O(N*(InN)?)
| e kel N
: \'\
E
3 ® |
= 108 \ \
0\
10-3 U:Ej ’\
104 ) £ ‘
102 10° s
N
(a) Before Extrapolation. (b) After Extrapolation.

Figure 7: Log-log plot of maximum errors in Example 4.1.
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1.2 T T T

Numerical solution
1r —— N=28
£ =0.03125

0.8

Wi 0.6

0.4

0.2

Figure 8: Graph of the numerical solution for N = 256 and € = 2—5 in Example
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Figure 9: The log-log plot of the maximum pointwise errors using exponential (eXp) mesh for Example 4.2.
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Table 1: Values of EY¥ and SV for the solution of ¢ for Example 4.1.

N 64 128 256 212 1024 2048
271 3.5500e-03 1.8160e-03 0.1857e-04 4.6197e-04 2.3166e-04 1.1600e-04
2-3 1.4720e-02 7.9031e-03 4.1015e-03 2.0902e-03 1.0553e-03 5.3022e-04
26 2.3427e-02 1.5490e-02 9.7590e-03 5.8112e-03 3.3469¢-03 1.8832e-03
279 2.0704e-02 1.2767e-02 7.5627e-03 4.3494e-03 2.4481e-03 1.3565e-03
2-12 2.0707e-02 1.2768e-02 7.5643e-03 4.3506e-03 2.4488e-03 1.3569e-03
—15 2.0706e-02 1.2768e-02 7.5642e-03 4.3506e-03 2.4488e-03 1.3570e-03
2-20 2.0706e-02 1.2768e-02 7.5642e-03 4.3506e-03 2.4488e-03 1.3570e-03
EN (Solution £) || 2.3427e-02 1.5490e-02 9.7590e-03 5.8112e-03 3.3469e-03 1.8832e-03
S¥ (Solution &) 0.5968 0.6665 0.7479 0.7960 0.8296 -
271 1.7750e-03 9.0801e-04 4.5929e-04 2.3098e-04 1.1583e-04 5.8000e-05
23 1.8400e-03 9.8788e-04 5.1268e-04 2.6128e-04 1.3191e-04 6.627Te-05
26 3.2208e-04 1.9888e-04 1.1788e-04 6.7813e-05 3.8171e-05 2.1152e-05
-9 4.3649e-05 2.4935e-05 1.4771e-05 8.4950e-06 4.7813e-06 2.6495e-06
2-12 2.0554e-06 3.1173e-06 1.8468e-06 1.0622e-06 5.9784e-07 3.3128e-07
2-15 6.3191e-07 3.8965e-07 2.3084e-07 1.3277e-07 7.4731e-08 4.1411e-08
—IT 1.5798e-07 9.7412e-08 5.7710e-08 3.3193e-08 1.8683e-08 1.0353e-08
220 2.1161e-08 1.4085e-08 8.8689e-09 5.2990e-09 3.0561e-09 1.7213e-09
E™ (Solution £) || 1.8400e-03 9.8788e-04 5.1268e-04 2.6128e-04 1.3191e-04 6.6277e-05
S¥ (Solution £) 0.8973 0.9463 0.9725 0.9860 0.9930 -

Table 2: Values of EY and SV for the solution of ¢ for Example 4.2.

SN ! 128 756 512 1027 20183
-1 1.7018¢-03  8.6234e-04  4.3406e-04  2.1776e-04  1.0906e-04  5.4576e-05
—3 1.0520e-02  5.4609¢-03  2.7833e-03  1.4052e-03  7.0603e-04  3.5388e-04
26 4.8788e-03  2.4950e-03  1.2620e-03  6.3466e-04  3.1825e-04  1.5936e-04
-9 2.070de-02  1.2767e-02  7.5627e-03  4.3494e-03  2.4481e-03  1.3565e-03
912 2.0707e-02  1.2768e-02  7.5643e-03  4.3506e-03  2.4488¢-03  1.3569¢-03
2-15 2.0706e-02  1.2768¢-02  7.5642e-03  4.3506e-03  2.4488¢-03  1.3570e-03
-17 2.0706e-02  1.2768¢-02  7.5642e-03  4.3506e-03  2.4488¢-03  1.3570e-03
9 2.0706e-02  1.2768¢-02  7.5642¢-03  4.3506e-03  2.4488¢-03 _ 1.3570e-03
EY (Solution £) | 2.0706e-02 1.2768e-02 7.5642e-03 4.3506e-03 2.4488e-03 1.3570e-03
SN (Solution &) | 0.6975 0.7553 0.7980 0.8291 0.8517 -
21 8.5088e-04  4.3117e-04  2.1703e-04  1.0888e-04  5.4531e-05  2.7288¢-05
-3 1.3151e-03  6.8261e-04  3.4791e-04  1.7565e-04  8.8254e-05  4.4235e-05
26 3.2208e-04  1.9888e-04  1.1788¢-04  6.7813e-05  3.8171e-05  2.1152e-05
-9 4.0438e-05  204935e-05  1.4771e-05  8.4950e-06  4.7813e-06  2.6405e-06
9-12 5.055de-06  3.1173e-06  1.8468¢-06  1.0622e-06  5.9784e-07  3.3128e-07
2-15 6.3191e-07  3.8965e-07  2.3084e-07  1.3277e-07  7.4731e-08  4.1411e-08
-17 1.5798¢-07  9.7412e-08  5.7710e-08  3.3193e-08  1.8683e-08  1.0353e-08
9 1.9747e-08 _ 1.2177e-08 _ 7.2138¢-09  4.1491e-09 _ 2.3354e-09 _ 1.2941e-09
EY (Solution £) | 1.3151e-03 6.8261e-04 3.4791e-04 1.7565e-04 8.8254e-05 4.4235e-05
SN (Solution £) | 0.9460 0.9723 0.9860 0.9930 0.9965 -

maximum pointwise errors in Figures 7 and 10, that Richardson extrapolation effectively increases the order of
convergence of the upwind scheme. The upwind scheme’s order of convergence improves from O N —1 In N to
O N —2 In2 N, which is consistent with the theoretical bounds established in Theorems 3.1 and 3.10. These
experimental results validate the effectiveness of Richardson extrapolation.

CONCLUSION

We used the Richardson extrapolation applied to an upwind finite difference method on Shishkin mesh and
exponential (eXp) mesh to solve singularly perturbed second-order convection-diffusion problems (2.1) with
integral boundary conditions. The behavior of the continuous solution of the problem is investigated and
proven to satisfy the continuous stability estimate. The integral boundary condition is addressed using
numerical integration techniques, namely the trapezoidal rule.

We discretized the domain using a piecewise-uniform mesh and exponential (eXp) by utilized the upwind

finite difference scheme. To handle the integral boundary conditions, we employed the trapezoidal rule for
numerical integration. The findings from these articles indicate a robust application of Richardson
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extrapolation techniques across various types of singularly perturbed convection-diffusion problems, including
those with integral and non-local boundary conditions. The use of Shishkin and other graded meshes is
prevalent, showcasing their effectiveness in enhanc- ing numerical accuracy. The novel approach described in
the query aligns well with these studies, particularly in its focus on integral boundary conditions and the
combination of different mesh types.

Table 3: Maximum point-wise errors and the corresponding order of convergence using before and after extrapolation
for Example 4.1.

= Extrapolation Number of Mesh Intervals N
64 128 256 h12 1024 2048
Before 1.7750e-03 9.0801e-04 4.5929e-04 2.3098e-04 1.1583e-04 5.8000e-05
2-1 0.9356 0.96705 9.8332 0.9916 0.9978
After 5.5469e-05 1.4188e-05 3.5882e-006 9.0228e-07 2.2623e-07 5.6064e-08
1.9357 1.967 1.9833 1.9916 1.9958
Before 2.0200e-03 1.0499e-03 5.3540e-04 2.7039e-04 1.3588e-04 6G.8110e-05
2-2 0.8928 0.9441 0.9714 (.9855 0.9927
After 1.2625e-4 3.2808e-05 8.3656e-06 2.1124e-06 5.3077e-07 1.3303e-07
1.8928 1.9442 1.9715 1.9856 1.9927
Before 1.5400e-03 9.8T88e-04 5. 1268e-04 2.6128e-04 1.3191e-04 6.627Te-05
2-4 0.8110 0.8973 0.9462 0.9724 0.9360
After 2.3001e-4 6.1743e-05 1.6021e-05 4.0824e-06 1.0305e-06 2.689e-07
1.811 1.8973 1.9463 1.9725 19361
Before 1.5855e-03 9.0435e-04 4.8573e-04 2.5213e-04 1.2851e-04 6.4882e-05
2-4 0.4702 0. 8099 0.8967 (.9459 0.9723
After 3.9637e-04 1.1304e-04 3.0358e-05 T.8791e-06 2.0079%e-06 5.0689e-07
1.811 1.8973 1.9463 1.9725 1.9861
Before 7.6736e-04 5.0594e-04 3.1774e-04 1.8858e-04 1.0843e-04 6.0910e-05
2-5 0.4087 0.6009 0. 6711 0.7526 (.7983
After 3.8368e-4 1.2649e-4 3.9717e-05 1.1786e-05 3.3884e-06 9.5172e-07
1.4087 1.6009 1.6711 1.7527 1.7984
Before 3.2208e-04 1.9888e-04 1.1788e-04 6.7813e-05 3.8171e-05 2.1152e-05
2-6 0.4028 0.D68T 0.6716 0.8106 (0.8971
After 3.5656e-4 1.1825e-4 3.7243e-05 1.1106e-05 3.2004e-06 9.0079e-07
1.4085 1.5922 1.6669 1.7456 1.7951
EN Before 2.0200e-03 1.0499e-03 5.3540e-04 2.7039e-04 1.3588e-04 6.8110e-05
s 0.9441 0.9716 0.9856 0.9927 0.9964
E'(‘:’;tp After 3.8368e-4 1.2649e-4 3.9717e-05 1.1786e-05 3.3884e-06 9.5172e-07
SN, 1.6009 1.6712 1.7527 1.7984 1.8320

In addition, we utilized the Richardson extrapolation method to greatly enhance accuracy, resulting in nearly a
second-order convergence rate. Our analysis revealed an improvement in convergence rate from about O
(N 'InN) to O (N 2 In? N) with respect to €, leading to more dependable and precise solutions with fewer errors
at the nodes. We presented two instances that illustrated the highest pointwise errors and convergence rates for
different values of € and N . The convergence rate improves approximately from first-order O (N') to nearly
second-order O (N2(In N )? concerning ¢, as seen in the order of convergence: The overall result of our
investigation suggests that using extrapolation decreases nodal errors and increases the numerical method’s
convergence rate. The experimental results align with the theoretical bounds established in Theorems 3.10 and
??. Two examples validate the effectiveness of the numerical method, displaying maximum pointwise errors
and convergence rates for different € and N. Finally, a comparison is made that demonstrates how post-
processing techniques produce better, more accurate results. Future work could extend this method to handle
problems with two parameters, PDE, and equations with a discontinuous source term with non-local boundary
conditions. The above method can be extended to problems.
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Figure 10: The log-log plot of the maximum pointwise errors using Shishkin mesh for Example 4.2.

10?

With two parameter, partial differential equations and also equations with discontinuous source term with
integral boundary conditions.

Table 4 Maximum point-wise errors and the corresponding order of convergence using before and after extrapolation

for Example 4.2.

= Extrapolation Number of Mesh Intervals N
[ | 128 256 o132 1024 RTIEE]
Before B.5088e-(4 4.311Te-0M4 2.1705e-04 10RERe-04 S.4531e-05 2728 Be-05
-1 0.9623 0.9807 0.9903 0.9951 0.09075
After 2.65%-05 6. 73Te-06 1.6955a-06 4.2531e-07 1.0651e-07 2 6649e-08
1.9623 1.9807 1.9904 1.9952 19976
Before 12197003 B, 24 The-(4 3155004 1. A80Ge-{H TG0 2e-05 FORAe-05
a-2 0.9339 0.9674 0.9833 09916 (1.0058
After T.6231e-05 4.9296e-06 1.239%6e-06 3.1079e-07 T.7T810e-08 7.9644e-08
1.9340 L0675 1.95834 19916 19958
Before 1.3151e-03 6.826]e-(4 3.4THe-04 1.75065e-04 &.8254e-05 4. 4235e-05
a-4 0.8965 0.9459 0.9723 IRILTH (1.5520
After 1.64380-4 4. 266305 1.0872a-05 2.7445e-06 6.8045:-07 1.7279e-07
1.8066 1.946 1.9724 1986 1.9529
Before 1.2331e-03 661 TRe-(4 3.4338a-04 1.7408e-04 &.833de-05 4.4381e-05
g4 0.8122 (.8078 0.9465 09726 (1. 0861
After 3.255e-4 0.9752e-05 2.9547e-05 B A% 5e-06 2,391 Le-06 6624 8e-07
16308 LEOTS 1.7554 1798 15202
Before 6.4174e-(M 3.0682e-(4 2.3530a-04 1.353Te-04 T.6197e-05 4.2223e-05
=5 (L6735 0.8116 0.8975 0.9464 0.0725
After 3.208Te-4 0.9206e-05 2.9412a-05 B.4603e-06 2,381 1e-06 6.5974e-07
16173 L6035 1.754 L7076 18201
Before B.6615e-(4 5.4320e-(4 30052604 1661 Ge-04 8.6226:-05 4.3942e-05
3-8 0.5849 06731 0.8114 (L8075 00,0463
After 3.2354e-4 0.9751e-05 2.0548a-05 8497 1e-06 2,391 de-06 6.6258e-07
16250 16055 1.7545 L79TT 1.82a1
EN Before 1.3161e-03  6.8261e-04  3.4791e-04  1.7666e-04  8.8254e-06 4.4236e-05 |
5 0.9460 0.9723 0.9860 0.9930 (0.9965
Ec':";tp After 3.2354e-4 09.9752e-05 2,09548e-05 B.49T73e-06  2.3914e-06 6.6258e-07
S.I'::;,:p 1.6975 1.7553 1.7980 1.8201 1.8517
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