
 

                                                                                       

 

   

             

 
 

 

ABSTRACT 
This article presents a parameter-uniform hybrid numerical technique for singularly perturbed parabolic convection-
diffusion problems (SPPCDP) with discontinuous initial conditions (DIC). It utilizes the classical backward-Euler 
technique for time discretization and a hybrid finite difference scheme ( which is a proper combination of the midpoint 
upwind scheme in the outer regions and the classical central difference scheme in the interior layer regions(generated by 
the DIC)) for spatial discretization. The scheme produces parameter-uniform numerical approximations on a piecewise- 
uniform Shishkin mesh. When the perturbation parameter ε(0 < ε ≪ 1) is small, it becomes difficult to solve these 
problems using the classical numerical methods (standard central difference or a standard upwind scheme) on uniform 
meshes because discontinuous initial conditions frequently appear in the solutions of this class of problems. The method is 
shown to converge uniformly in the discrete supremum with nearly second-order spatial accuracy. The suggested method 
is subjected to a stability study, and parameter-uniform error estimates are generated. In order to support the theoretical 
findings, numerical results are presented. 

Keywords: Singularly perturbed parabolic convection-diffusion problem, finite difference scheme, Discontinuous initial 
condition, Interior and Boundary Layer, Piecewise-uniform S-type mesh. 
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INTRODUCTION 

This article investigates singularly perturbed parabolic partial differential equations (SPPDE) with interior layers, which 
are caused by the discontinuity in the initial condition (DIC) [25, 16, 1, 7, 12, 14, 15, 31]. SPPDE appears in many areas 
of science and engineering, including the simulation of oil extraction from underground reservoirs, fluid flows such as 
water quality problems in river net- works, convective heat transport problems with large Péclet numbers, and so on [9, 8]. 
Singularly perturbed problems (SPPs) are convection-diffusion processesresulting from convection-diffusion linearization 
and are used in fields such as oil extraction, fluid flows, and convective heat transport problems. These problems are 
described by partial differential equations (PDEs) with the highest spatial derivative multiplied by an arbitrarily small 
parameter ε [9, 20, 27]. In general, the solu- tions of these problems possess boundary layers which are thin regions in the 
neighborhood of the boundary of the domain, where the gradient of the solution steepens as the perturbation parameter ε 

tends to zero. Unless the mesh size is reduced in comparison to the diffusion parameter, i.e., the singular perturbation 
parameter, classical numerical methods on uniform meshes may fail to produce good numerical approximate solutions to 
these issues. The domain must be discretized using layer-adapted nonuniform meshes to get parameter-uniformly 
convergent numerical solutions to SPPs using classical finite difference techniques [32, 21, 19]. Because of these problems, 
numer- ical solutions to SPPs have grown in popularity among applied mathematicians and engineers. To get uniformly 
convergent numerical solutions of SPPs, numerous approaches are available in the literature; for more information, see 
the books by Miller et al. ([20]), Farrell et al. [9], Roos et al. [27], and Shishkin and Shishkina [29]. 

The main purpose of this article is to design and analyze a parameter-uniform hybrid scheme for solving SPPCDP with 
DIC. The parameter-uniform hybrid scheme for the SPPCDP with DIC is devised, produced, evaluated, and examined. 
We are interested in developing a parameter- uniform numerical technique [20] for this class of SPP in this study. SPPs 
cannot be solved effectively using ordinary numerical methods on uniform meshes due to the presence of boundary and 
interior layers in their solutions. Developing parameter-uniform numerical methods is thus a well-established principle in 
the study of numerical solutions to SPPs. We propose a higher-order uniformly convergent numerical scheme on the 
layer-adapted meshes like the piecewise-uniform Shishkin for singularly perturbed convection-diffusion problems with 
DIC and source term. Many ε-uniform numerical methods for stationary and non-stationary problems have been developed 
over the last few decades by many researchers; see the books [17, 6, 22, 1]. Roos et al. [27, 9] discussed numerical 
techniques for singularly perturbed differential equations. Natesan and Mukherjee [22, 21, 26], a parameter-uniform hybrid 
numerical scheme for the time-dependent convection-dominated initial boundary value problems. Clavero et al. [6, 4] 
and Cai and Liu [7, 3] have developed a variety of parameter uniform convergent methods based on Shishkin mesh. 
O’Riordan and Shishkin [29, 28, 24] considered parabolic problems with discontinuity as a function of time and developed a 
parameter-uniform numerical scheme using an implicit upwind difference scheme. Cen [2] developed an almost second-order 
parameter-uniform approximation using a hybrid difference scheme on the Shishkin mesh. 

Mukherjee and Natesan [22, 21], discussed ε-Uniform error estimate of hybrid numerical scheme for SPPCDPs with interior 
layers. Mukherjee and Natesan [23, 22] considered a singularly perturbed parabolic convection-diffusion one-dimensional 
problem and the proposed numerical scheme consists of a classical backward-Euler method for the time discretization and a 
hybrid finite difference scheme for the spatial discretization, which proved second-order spatial accurate. According to 
Shishkin et al. [29, 30], parameter-uniform numerical methods for singularly perturbed parabolic problems with a DIC 
have been analyzed and examined. Rather than using hybrid (combination of midpoint upwind and central) finite 
difference operators on a piecewise-uniform mesh, Shishkin [6, 23] uses suitable fitted operator methods to capture the 
singularity in the neighborhood of the discontinuity. Gracia and E. O’Riordan [12, 11], discussed parameter-uniform 
approximations for a SPPCDP with a DIC. Gracia and E. O’Riordan [33, 10, 11], they construct and design numerical 
approxi- mations to a singularly perturbed problem with a DIC. Clavero et al.[3, 6, 5], proved an efficient numerical 
scheme for 1D parabolic SPP with interior and boundary layers. Mukherjee and Nate- san, [22, 23], presented time-
dependent convection-dominated initial-boundary-value issues with parameter-uniform hybrid numerical techniques. Roos 
and Linns [27] characterized such meshes for the first time with the help of the mesh-generating functions and utilizing it, 
they easily deduced ε- uniform converges of the simple upwinding and linear finite elements applied to singularly perturbed 
boundary value problem exhibiting regular boundary layer. Recently, for SPPCDP, Mukherjee and Natesan [22], 
improved a hybrid numerical approach for SPP with parameter-uniform interior lay- ers. In recent years, regarding SPP 
with discontinuous convection coefficients possessing strong interior layers, Hemker et al. [15, 16] analyzed ε-
uniform convergence of the standard upwind scheme for a stationary case. This paper addresses the SPPCDP with a 
DIC and focuses on the position of the interior layer function (2.1). When the parameter is extremely small, an interior 
layer follows a characteristic curve associated with the reduced problem. In a related work by [6], we examined a similar 
SPCDP with a DIC set by a = 0. The paper identifies an analytical function that aligns with the DIC while satisfying a 
differential equation with constant coefficients. The position of the interior layer function changes over time in the 
corresponding convection-diffusion problem, and numerical methods must track this position. Techniques like the Shishkin 
mesh tackle the problem for initial conditions ϕ ∈ C0(0, 1)\C1(0, 1). The paper assumes that the convective coefficient is 
smooth, strictly positive, and solely time-dependent. An explicit discontinuous func- tion, denoted as S˜(x, t), captures the 
singularity associated with the DIC. Asymptotic expansions for the solution u(x, t), including this singularity, are 
constructed. When subtracting this singular function, the remaining y˜ = u(x, t) − S˜(x, t) becomes the solution of an 
SPCDP. 
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With this motivation, the objective is to develop and analyze a parameter-uniform hybrid numerical approach for 
solving the SPPCDP with DIC (2.1). The paper proposes a numerical scheme that combines the backward-Euler method 
for time discretization and a hybrid finite differ- ence scheme for spatial discretization. This hybrid scheme integrates the 
classical backward-Euler method for time discretization with a hybrid finite difference scheme for spatial discretization. 
We also analyze the truncation error associated with our proposed approach, perform stability analysis, and present 
numerical examples to validate the theoretical findings. 

The remainder of the paper is organized as follows: Section 2, we define the continuous problem to be examined, define the 
singular function S˜(x, t)associated with DIC, and present prior bounds on the derivatives of the remainder term y˜(x, t). 
Section 3, introduces a numerical scheme in the transformed domain based on a hybrid scheme. Section 4, discussed 
uniformly convergent of fully discrete scheme. Section 5, discusses error analysis and their stability. Section 6, includes 
numerical examples to validate the theoretical results. The paper concludes with the conclusions. 

Notations Domains are represented by Ω = (0, 1), d˜ = d˜(0), D = Ω × (0, T ).  In this paper, we use C as a constant 
independent of both the singular perturbation parameter ε and all discretization parameters. 

A function’s jump (a jump of a function) ϕ at a discontinuity point d˜ is also defined by 
[ϕ](d̃ ) = ϕ(d̃ +) − ϕ(d̃ −). 

 

The L∞ norm on the domain D will be denoted by | |. | |D̄ . We also denote the following interior layer function 

 

The finite difference operators L, L, Lε, and LN,M denotes to approximate the differential operator L and will be 
discussed further. 

We denote ||. ||D̄  is the maximum norm over any region D, which is defined by 
||g|| ¯ D =max |g(x)| D¯ 

x∈¯ D 
 
for any function g. 
The space C0+γ (D) where D ⊂ R2, denotes an open set and is defined by 

 

THE CONTINUOUS PROBLEM 
We consider the following 1D SPPCDP with DIC on domain D: 

where D = Ω × (0, T ], Ω = (0, 1), t ∈ (0, T ], T > 0. Here ε is a perturbation parameter such that 0 < ε ≪ 1 and the 
coefficients a(x, t), b(x, t) are smooth functions satisfying the followings: 

a(x, t) ≥ α > 0, b(x, t) ≥ β ≥ 0 on  Ω̅. 

Moreover, [ϕ] denotes the jump in the function ϕ across the point of discontinuity x = d˜, that is, [ϕ](d˜) = ϕ(d˜+)−ϕ(d˜−). 
In general, due to the presence of a discontinuity in the convection coefficient a(x, t), the solution u(x, t) of the problem (2.1) 
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possesses an interior layer in the neighborhood of the point x =d˜. We observe that the initial function ϕ(x) is 
discontinuous at x = d  ̃ and the location of this point does not depend on the singular perturbation parameter ε. We 
assume that the initial data ϕ are sufficiently smooth functions on the domain D̄ [? ] and that satisfy sufficient 
compatibility conditions at the corner points (0, 0) and (1, 0).  

We also assume that the required compatibility conditions at the transition point (d˜, 0) follow a similar pattern. 
Assuming sufficient smoothness and compatibility conditions on u0 and f , the parabolic problem (2.1) typically has a 
unique solution u(x, t). This solution displays a regular boundary layer of width O(ε) at x = 1. Additionally, in the 
range a(t) > α > 0,0 ≤ t ≤ T,a, f ∈ C4+γ( �̅�), we presume that b and f constitute suitably regular layer components. 
Moreover, we assume adequate compatibility at the points (0, 0) and (1, 0) to ensure u ∈ C 4+γ (D̄ ). 

Let there be a point d̃ ∈  (0, 1) such that ϕ is not continuous at  𝑥 = �̃�, 𝑏𝑢𝑡 𝜙 ∈  𝐶4(Ω̅\ {𝑑 ̅}) 

Since a > 0, the function d˜(t) is monotonically increasing. Therefore we assume that the convection term a(x, t) depends on 
both time and space variables. Then the location of the interior layer does not remain at the same position throughout the 
process. Thus, we need to track the movement of the layer. The path of the characteristic curve Γ is defined by the 

following: 
 

 

We note that the characteristic curve Γ is generally not a straight line. Since a(x, t) > 0, the curve Γ is strictly increasing. 
Therefore, we have to restrict the final time T in order to avoid the overlap (to extend over or past around and cover) 
between the interior layer and the boundary layer regions. We also restrict the size of the final time T so that the interior 
layer does not interact with the boundary layer. We note that Gracia and E. O’Riordan [12, 14] proved that the 
restriction can be defined by the following relation: 

Next, we decompose the solution u of problem (2.1) into the following way: 

 

 

The discontinuity in the initial condition generates an interior layer emanating from the point (d˜, 0). 

By identifying the leading term 
2 

[ϕ](d)ψ0 in an asymptotic expansion of the solution, we can define the following 

continuous function 
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2.1 Transformation to fix the location of the interior layer 
We observe that the in-homogeneous term in (2.6) is continuous, but not in C 1 ( D̄ ) on the closed domain. The presence of an 
inhomogeneous term will induce an interior layer into the function y. So if the convective term a(x, t) depends on the 
space variable, we are required to transform the problem (2.1) so that the curve Γ is transformed to a straight line, 

around which a layer-adapted mesh-like piecewise-uniform Shishkin mesh is constructed. 
 
One possible choice for the transformation X : (x, t) → (k, t) is the piecewise linear map given by [10, 12]  

 
which means that a(d˜(t), t) = a(d˜, t). We note that x = k at t = 0 and x = d for all t such that x = d˜(t). We also 
define two subdomains of D on either side of (left and right subdomains) Γ to be 

D− = Ω̄ − × (0, T ] = (0, d˜) × (0, T ] and D+ = Ω̄ + × (0, T] = (d̃,  1) × (0, T]. 

Using this map, the differential equation (2.1) can be transformed into the following problem: Find y such that 

2.2 Bounds for the solution of continuous problem 

In this section, we analyze the solution of the SPPCDPs defined by (2.1) and its derivatives. The solution’s 
existence and uniqueness depend on the smoothness of ϕ(x) and the compatibility condition at the corner points, as 
described below: 
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2.2.1. Decomposition of the solution 

The sections that follow discuss solution decomposition. To develop sharp bounds in the error analysis, the SPPCDP 
with DIC (2.1) solution u(x) is decomposed into u(x, t) = v(x, t) + w(x, t) + z(x, t), (x, t) ∈ D̄ , where regular (smooth) 
component p(x, t), singular component q(x, t), and inte- rior layer component z(x, t). The smooth component p(x, t) can be 
expressed using an asymptotic expansion: 

 

where v(d˜±, t) = limx→d˜±0 v(x, t) and the suitable choices of the functions g1(t) and g2(t) will be obtained from 
Theorem 2.2. 

We define the discontinuous function w, which represents the singular component of the decompo- sition, as follows: 

 

We define the discontinuous function z, which constitutes the interior component of the decompo- sition, as follows: 
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Theorem 2.1. Assume in equations (2.1) that the data a, b ∈ C 2 (Ω̄ ), f ∈ C 2+λ (D̄ ) and the con- vection coefficient a(x, t) ≥ α > 
0, x ∈ Ω̄ .Also, let the initial data ϕ be identically zero so that the compatibility conditions 

Theorem 2.3. There exists a function r(t) such that the problem solutions v, w 

Lεv = f, ((x, t) ∈ D, (2.24a) 
v(x, 0) = g1(x), v(−1, t) = u(−1, t), v(1, t) = r(t) (2.24b) 

Lεw = 0, (x, t) ∈ D, (2.24c) 
w(0, t) = 0, w(−1, t) = 0, w(1, t) = u(1, t) − r(t), (2.24d) 
 

such that v, w ∈ C4+γ(¯D) and the following regular component v satisfies the following bounds for 0 ≤i+2j ≤4 

 

Next, we decompose the boundary layer components w, for all 0 ≤ i + 2j ≤ 4 and (x, D̄ ), of the solution u of the 
discontinuous initial condition (2.1) to satisfy the following bounds: 
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t 

Theorem 2.4. The interior layer component z ∈ C2+γ(D¯+) ∪ C2+γ(D¯+) satisfies the bounds 

 

 

Remark 2.5. If u is the solution of the continuous problem (2.10) in the transformed domain and U be the solution of the 
discrete problem (3.1), then Û  is the solution obtained from U using the hybrid scheme. If [ϕ](d˜) = 0 then the function u is 
decomposed as u = v + w + z . In this case, the constraint M = O(N ) can be removed by using the proof of the next theorem, and 
the following error estimate can be obtained: 

| | Û − u | |D̄  ≤ CN −1 ln N + CM −1 ln M 

If [ϕ′ ]( ˜ d)= 0 then the error bound is dominated by the term CM−1/2 , which corresponds to the result in [9], that is,

|| �̂� −u||�̅� ≤ CN−1lnN +C|[ϕ′](d)|M−1/2 . 

NUMERICAL SCHEME IN THE TRANSFORMED DOMAIN 

In this section, we use the implicit Euler method for time discretization and a layer-adapted mesh of the Shishkin type 
for spatial discretization with a hybrid numerical scheme. The main focus is to investigate both the semi-discretization 
and spatial discretization of the model problem, which are crucial for analyzing the convergence of the fully discrete 
scheme. 

We approximate the problem (2.7) using the implicit-Euler approach and typical central differences on layer-adapted 
meshes, such as the S-type mesh described in [19, 22, 32]. It’s important to note that the interior layer, originating from 
x = d˜ and following the characteristic curve Γ, remains independent of the boundary layer near x = 1. 

The Semidiscretization 

This section discusses the temporal semi-discretization of the model problem (2.1) which is required for the fully discrete 
scheme’s convergence analysis. We consider a uniform mesh to discretize the time domain [0, T ] and denote it with a 
uniform time step size ∆t such that 

Ω̂
M  = {tn : tn = n∆t, n = 0, . . . M, t0 = 0, tM = T, ∆t = T/M } 

where M denotes the number of mesh intervals in the t-direction (temporal direction). By using the backward-Euler 
method to discretize the problem (2.1), we obtain the following semi discrete scheme: 

 

Proof. The detailed proof can be obtained by [10, 12]. 
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2 

x 

 ̄

D0 is the central difference and I is the identity operator. In addition, U n(x) is the semi-discrete approximation to the 
exact solution u(x, t) of the continuous problem (2.1) at tn. 

The operator (I + ∆tLx,ε) satisfies the following minimum principle, which ensures the stability of the scheme (3.1). 

1. Convergence Analysis 
Lemma (Minimum Principle for the semi-discrete problem) Let D be any domain and z ∈ C 2 ( D̄ ). If z(x) ≥ 0 on the 
boundary of D and (I + ∆tLx,ε) z(x) ≤ 0, ∀x ∈ D, then z(x) ≥ 0, ∀x ∈ D. 
 
Proof. The proof can be found in [21] and [22] for detailed information. In order to analyze the uniform convergence of 
the solution Ûn (x) of (3.1) to the exact solution u(x, tn), we will do the stability analysis and also derive the consistency 
result of the scheme (3.1). It is clear that the operator (I + ∆tLx,ε) satisfies the following maximum principle:

 

which ensures the stability of the scheme (3.1) and (see [21] for details). 

Next, we define the local truncation error en+1 for the semi-discrete scheme (3.1), and at the (n + 1)-th time level, 
this error is characterized by the following expression: 

en+1 = u(tn+1) − ûn+1 , . . ., n = 0, 1, . . ., M − 1. (3.2) 

where ûn + 1  is the solution obtained after one step of the semi-discrete scheme, initialized with the exact value u(tn) 
instead of using un(x) as the initial data. Specifically, we have: 

 

Lemma 3.2. Let the local truncation error en+1 satisfies 

||en+1||∞ ≤(C∆t2)
 

. 

Proof. One can refer [23]. 

The following lemma gives consistency results for the semidiscrete scheme: 

Lemma 3.3. Let u be the solution of the problem (2.1). If 

 

then, the local error corresponding to the numerical scheme (2.1) satisfies 

||en+1 ||∞,Ω̄ ≤ C((∆t) , n = 0, 1, . . . , M − 1. (3.4) 

In order to show the uniform convergence of semidiscretizastion in (3.1), we introduce the global error En as 

En = u(tn) − un, 1 ≤ n ≤ M. (3.5) 

The following theorem demonstrates that the global error for time semidiscretization processes are first-order convergent. 

Theorem 3.4. The global error En in (3.5) satisfies 

(3.6) 

 

Proof: See [22] for details. 

The Spatial discretization and the special meshes 
2. Construction of piecewise-uniform (Shishkin mesh) 

Assuming that N and M = O(N ) are both positive integers, we consider the domain D̄  = Ω̄ × 

Journal of Advance Research in Mathematics And Statistics ISSN: 2208-2409

Volume-11 | Issue-1 | Aug, 2024 74



 

× ≥ 

x 

i=0 

x t 

x x 

t i 

[0, T ] =[0, 1]     [0, T ]. Additionally, let N ≥ 4 be a positive even integer. We approximate solution of the problem 
(2.10) and (2.12) on a rectangular grid in the computation domain D̄ N,M ={xi}Ni=0×{xj}M

j=0 which concentrates 
mesh points in the interior and boundary layers with ∂DN,M= D̄ N,M \ D. 

Since the SPPCDP with DIC (2.1) has a DIC has an interior layer at x = d˜, we construct a piecewise-uniform 
Shishkin mesh. The solution of the model problem (2.1) also exhibits boundary layers of width O(√ε) and interior layer 
emanating at a point x = d˜, we construct the rectangular mesh as follows. Based on the bounds (??) on the layer 
components, the Shishkin mesh is defined by using the following transition points. 

We divide the transformed space domain [0, 1] into the following four sub-intervals as follows 

[0, 1] = [0, d˜− τ1] ∪ [d˜− τ1, d˜+ τ2] ∪ [d˜+ τ2, 1 − τ̂ x] ∪ [1 − τ̂ x, 1], 

 where the transition points τ1, τ2 and τˆx are defined by 

 

On each subinterval, a uniform mesh with N/4 mesh intervals is placed such that 

 

denotes the set of interior points of the mesh. 

The mesh interval point N of spatial grids are distributed into four intervals in the ratio  

and each of them is spaced uniformly.  

Thus, the computational domain is defined as 

D̄ N,M = Ω̂N × Ω̂M , 

where 

Ω̂
N  = {xi : xi−1 + hi, x0 = 0, xN = 1, 1 ≤ i ≤ N } . 

Then, obviously, xN/2 = d˜ and Ω̄ N = {xi}N   Let us denote the step sizes in space by hi = xi − xi−1, i = 1, . . . , N 
and let ĥ = hi + hi+1, for i = 1, . . . , N − 1. Further, we denote the mesh size hi in spatial direction as follows: 

 

3. Hybrid finite difference scheme 
We propose a numerical scheme that combines the classical backward-Euler method for tempo- ral discretization with 
the mid-point upwind scheme in the outer regions and the classical central difference scheme in the interior layer 
regions and the boundary layer region for the spatial dis- cretization. 1 We define the difference operators like 
forward D+, backward D−, and central difference D0 in space, second-order central difference operator δ2, and 
backward difference operator D−  in time, respectively for the mesh functions v(xi, tj) = vj on D̄ N,∆t. We also 
define  
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dis,x dis,x 

ε 

i 

Now, we are ready to define the hybrid numerical scheme for the SPPCDP (2.1) which consists of a proper combination 
of the midpoint upwind scheme in the outer regions [0, d˜− τ1], [d˜− τ1, d˜+ τ2] and the central difference scheme which is used 
in the interior layer regions [d̃ + τ2, 1 − τˆx] and boundary layer region [1 − τˆx, 1] to discretize the spatial derivatives. 
The difference operator of DIC is denoted by 

where, D+      denotes the forward, D−      backward DIC. 

The finite difference operator is denoted by LN , and a hybrid numerical scheme is developed by combining the three 
schemes, which takes the form: 

 
1Before describing the computational scheme, we define the following notations for various finite difference oper- 
ators D+, D−, D0, δ2 and D−: 
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After rearranging the terms in (3.10)-(3.12),we obtain the following complete hybrid scheme on the mesh ¯ DN,M: 

 
 

 

Journal of Advance Research in Mathematics And Statistics ISSN: 2208-2409

Volume-11 | Issue-1 | Aug, 2024 77



 

 

Finally, the numerical solution at the (n + 1)th level can be obtained by solving the tridiagonal equation. In general, 
we use the Shishkin mesh for the hybrid finite difference technique in the preceding sections and we will choose the 
special meshes by comparing piecewise-uniform S-type mesh. 

Ε-UNIFORM CONVERGENCE OF THE FULLY DISCRETE SCHEME 

We recall that, by combining the time semi-discretization scheme (3.1) obtained by applying the implicit Euler method 
and rearranging the terms in (3.14) obtained by applying a hybrid scheme for the spatial derivative, we have: 

 

and the coefficients are given by (3.16), (3.17), (3.18) and (3.19). An existing solver can solve the above tridiagonal 
system of linear algebraic equations. 

Lemma Truncation error (hybrid scheme) Let t(x) be a smooth function defined on Ω̄ also let ri = r(xi) on Ω̄ N . For i = 1, . . . 
, N − 1, the following estimates holds true: 

Theorem 4.2. (Truncation Error) Let d˜(T ) ≤ 1 − δ and M = O(N ). If U is the solution of discrete problem (3.14) and u 
is the solution of singular problem (2.7), then we have, 

 

Proof The proof can be obtained in the same way as in Theorem 1 of [10, 12]. 

Theorem 4.3. For sufficiently large N and M ≥ O(ln N ), the solution Z of 

 

satisfies the following bounds 
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hyb 1 2 

i 

 −   

δ 

N,M 

 

Proof It can be proved by following the steps in Theorem 3 of [13, 10]. 

Theorem 4.4. Suppose 2T ||ax|| ≤ 1 − γ, 0 < γ < 1, ax(d˜, 0) = 0. For sufficiently large N and M ≥ O(ln(N )), the solution Z of 

L Z = Lz, xi ≠ d tj > 0; 

 

satisfies the following bounds 

 
 

Proof. It can be proved by following the steps in Theorem 4 of [10, 11]. 

ERROR ANALYSIS AND STABILITY 
1. Stability 
Lemma (Discrete minimum principle) For the purpose of error analysis, we make the assumption that N ≥ N0 and 

 
where α∗ = min {α∗, α∗}, α = max {α1, α2} and N0 is an arbitrary positive integer. Then, discrete operator LN defined in 
the hybrid numerical scheme in (3.14) satisfies the discrete minimum principle, in other words, if {Zi} are the mesh functions that 
satisfy Z0 ≤ 0, ZN ≤ 0 and LN Zi ≥ 0, in Ω̂N , then Zi ≤ 0 on Ω̂N . 

Proof. The proof can be done by following the steps in Theorem 5.3.1 of [19] Here, we remark that, if an M-matrix is 
associated with a hybrid finite difference scheme (3.14), then by assuming (5.1) and (5.2), we can conclude that the matrix is 
an M-matrix (monotone increasing). Hence, the operator in the hybrid scheme operator (3.14) satisfies the discrete 
minimum principle (see [22] for details). 

a. Error Analysis 

This section discusses the uniform error estimates for the numerical scheme in (3.14). We decom- pose the discrete 
solution (3.14) into smooth(regular), boundary and singular layer components analogous to the continuous problem 
(3.1) to estimate the nodal error |Ûn+1 

− u(xi, tj)|. We note that we study the error estimates separately for the outside 
and inside of the layer regions. 

i. Decomposition of the discrete solutions in the transformed domain 

We will estimate the nodal error | U N,M (xi, tn)    u(xi, tn)| by decomposing the solution U N,M (xi, tn) on the mesh DN,M 
in the following manner: 

 

Where the smooth (regular) component V ± and the singular component W ± are defined separately. Define the mesh 
function PL and PR (which is approximate p respectively to the left and right of the discontinuity x = d˜) to the solutions 
of the following discrete problems 
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Define the mesh function QL : D̄ N ∩ [0, d˜] → R and QR : D̄ N ∩ [d˜, 1] → R (which is approximate q respectively to the 
left and right of the discontinuity x = d) to the solutions of the following discrete problems 

 

In this section, we present some key lemmas to demonstrate the numerical solution’s ε-uniform convergence in the 
discrete supremum norm. We study the error estimates in the outer layer region, inner layer region, and interior layer 
region separately in the following sections: 

ii. The error estimate in the outer region 

The error bounds associated with the smooth components are obtained in the following lemma. 

Lemma 5.2. (Error in the smooth component ) Assume that ε ≤ CN −1. Then under the assump- tions (5.1) and (5.2) of Lemma 
5.1, the errors to the smooth layer components satisfy the following estimates 

 

Proof: The detailed proof is given by Mukherjee and Natesan in [22, 21]. 

iii. The error estimate in the inner region 

The error bounds associated with the singular (boundary) components are obtained in the following lemma. 

Lemma 5.3. (Error in the singular component) We assume that γ ≥ α/2 and τ0 ≥ 2/α. Then under the assumptions (5.1) and 
(5.2) of Lemma 5.1, the errors associated with the singular com- ponents satisfy the following estimates 
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Proof: The detailed proof is given by Mukherjee and Natesan in [22, 21]. Furthermore, in the following lemma, we 
obtain the error bounds for the non-smooth components. 

Lemma 5.4. Suppose γ = α/2 Then, under the assumptions (5.1) and (5.2) of Lemma (3.9), the errors associated with the hybrid 
scheme (3.14) 

|Ui − u(xi, tn)| ≤ C N −2 + ∆t , for 1 ≤ i ≤ N/4 ∪ 3N/4 ≤ i ≤ N − 1. (5.9) 

Proof: The detailed proof is given by Majumdar and Natesan in [19]. 

iv. The error estimate in the interior layer region 

On the domain Ω̄ N = {xi}0 N , we introduce the following two mesh functions 

 

(with the standard convention of S0 = 1 and ΛN = 1) where γ is a positive constant. 

Lemma 5.5. (Error in the interior component) 

 

And 

 

Proof: The detailed proof is given by Mukherjee and Natesan in [18, 23]. 

The above technical lemmas are used in the following lemma to obtain the bound for |Ui − u(xi, tn)| in the interior layer 
regions. 

Lemma 5.6. Suppose γ =α/2 Then, under the assumptions (5.1) and (5.2) of Lemma (3.9), the errors associated with the hybrid 
scheme (3.14) 

|Ui − u(xi, tn)| ≤ C N −2 ln2 N + ∆t , for N/4 + 1 ≤ i ≤ 3N/4 − 1. (5.12) 

Proof: The detailed proof is given by Majumdar and Natesan in [19, 22, 21]. 

Theorem 5.7. (The main convergence result) 

Suppose that N ≥ N0 satisfies the condition given in (5.1), (5.2) and ε ≤ CN −1. Then, if γ ≤ α/2 and τ0 ≥ 2/γ, the respective 
solution u and U of (2.1) and hybrid numerical scheme (3.14) satisfy the following error bounds at time level tn; 
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ε 

x Proof : We split the proof into three different cases depending on the mesh point xi ∈ Ω̂ N  : 

Case 1 (Outer region): For 1 ≤ i ≤ N/4 and N/2 ≤ 3N/4 − 1. In this case, we consider the mesh points {xi}, for 
N/4 ≤ i ≤ N/2 − 1 and 3N/4 ≤ i ≤ N − 1. By using Lemma 5.2 and Lemma 5.3 in 

we get the required error bounds in the outer region. 

Case 2 (Inner region): Here, we consider the mesh points {xi}, for 1 ≤ i ≤ N/4 − 1 and N/2 ≤ i ≤ 3N/4 − 1. 
Now, for 1 ≤ i ≤ N/4 − 1, by applying Taylor’s series expansion with the integral form of remainder term and the 
bounds of the derivatives given in Lemma 5.2 and Lemma 5.3, we get 

 

Case 3 (Interior layer region): 

Here, we need to find the bound for the error estimate |Z − z(xi, tn)| for i = N/2. In general, the estimate for Û − u(xi, tn) 
follows from Lemma 5.2, Lemma 5.3 and Lemma 5.5 with applying the triangle inequality to the problem 

    Û − u
 

(xi, tn) = (V − v) (xi, tn) + (W − w) (xi, tn) + (Z − z) (xi, tn) 

NUMERICAL EXAMPLES, RESULTS AND DISCUSSION 

In this section, we illustrate the numerical experiments for the theoretical findings presented in the previous sections. 
The uniform two-mesh (double-mesh) global differences EN,∆tand uniform orders of global convergence P N,∆t are 
calculated. Then for each ε, we can calculate the maximum point-wise error by 

 

The maximum point-wise errors E ε N,∆t, the corresponding order of convergence Pε 
N,∆t and the ε-uniform errors EN,∆t, 

the corresponding ε-uniform order of convergence P N,∆t, for Example 6.2 and Example ?? are presented in different 
tables for various values of ε and N . Consider the following singularly perturbed parabolic problem with 
discontinuous initial conditions: 
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Example 6.1. Consider the following singularly perturbed parabolic convection-diffusion problems with discontinuous initial 
conditions: 

 

Figure 1: Exact solution for Example 1 on the mesh for N = 256 of Example 6.1 

Note that ax(d˜, 0) = 0. 

 

Hence, we first examine if this transformation is needed if a = a(x, t). In table 2, we see that, without the mapping, the 
method is not-parameter-uniform. Therefore, example 1 is now approx- imated with the numerical scheme (discrete 
problem) (3.10) and (3.11) proposed in this work. In addition, the computed approximations to y˜ and u are displayed 
in figures (5) and (6). Again, the maximum double-mesh global differences are given in table 2. These numerical 
results are in agreement with the theorem 4.3. 

Example 6.2. Consider the following singularly perturbed parabolic problem with discontinuous initial conditions: 
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( 

 

Figure 2: Surface plot of numerical approximation to y and u with ε = 2−12 and N = M = 64 for Example 6.1. 

 

Figure 3: Loglog plot of ε-uniform maximum point-wise errors for Example 6.1 and 6.2. 

 

Figure 4: Loglog plot of ε-uniform maximum point-wise errors for Example 6.2. 

and the convective term coefficients are 

 

We briefly state the output of our numerical results with this example of discontinuous initial data. For this test example, 
plots of uN,M and y˜N,M = uN,M + S˜ are given for the sample of values, and the set of a parameter as 

ε= {100, 10−2, 100, . . . , 10−26} 

N = M = 64 
For this test example, plots of uN,M and y˜N,M = uN,M + S˜ are given for the sample of values, and the set of a parameter 

as ε = {100, 10−2, 100, . . . , 10−26} 
} 

and N = M = 64. 
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CONCLUSIONS 

This paper studies a hybrid technique for solving 1D singularly perturbed parabolic convection- diffusion problems 
with discontinuous initial conditions by considering a proper combination of central differences and a midpoint upwind 
technique. The stability and convergence of the proposed approach have been investigated and ε-uniform error estimates 
have been obtained. The method is second-order convergent. Two examples are studied to verify the order of convergence 
and accuracy of the theoretical error estimates. 

From the numerical experiments, we made the following observations about the newly proposed scheme for solving a 
class of singularly perturbed discontinuous initial conditions of the form (2.1). Firstly, it is observed that the ε-uniform 
errors (i.e.,εN or EN ) obtained in Tables 1 and 2, de- crease monotonically as N increases. This ensures that the hybrid 
numerical scheme is ε-uniformly convergent. 

Secondly, from the numerical results displayed in Tables 1 and 2, it is clear that the ε-uniform order of convergence of 
the hybrid scheme is nearly one as N increases, where as the proposed hybrid scheme converges ε-uniformly with 
almost second-order accuracy. These observations are in excellent agreement with the theoretical results obtained for the 
proposed hybrid scheme. More precisely, we notice that the current hybrid scheme yields higher-order accurate 
numerical results, particularly for larger values of ε. 

Table 1: Maximum point-wise errors and order of convergence for Example 6.1. 

ε ↓ Number of mesh points N = M 

 N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 

100 4.002e-4 1.001e-4 2.500e-5 6.250e-6 1.562e-6 

 2.0001 2.0006 2.0002 2.0003 2.0001 

10−2 7.968e-4 2.012e-4 5.032e-5 1.258e-5 3.146e-6 

 1.9858 1.9991 1.9998 2.0000 2.0000 

10−4 1.611e-3 4.072e-4 1.023e-4 2.560e-5 6.401e-6 

 1.9843 1.9929 1.9987 1.9996 1.9999 

10−6 3.020e-3 7.848e-4 1.982e-4 4.966e-5 1.243e-5 

 1.9441 1.9857 1.9964 1.9982 1.9998 

10−8 5.205e-3 1.495e-3 3.880e-4 9.793e-5 2.454e-5 

 1.8000 1.9459 1.9862 1.9965 1.9991 

10−1
0 

3.374e-3 1.902e-3 7.464e-4 1.936e-4 4.886e-5 

 0.8266 1.3499 1.9468 1.9864 1.9966 

10−1
2 

1.691e-3 1.008e-3 5.089e-4 2.064e-4 7.276e-5 

 0.7462 0.9860 1.3024 1.5039 1.4941 

10−1
4 

8.466e-4 5.111e-4 2.568e-4 1.039e-4 3.660e-5 

 0.7280 0.9929 1.3054 1.5054 1.4923 

10−1
6 

4.236e-4 2.574e-4 1.290e-4 5.215e-5 1.836e-5 
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 0.7189 0.9964 1.3070 1.5062 1.4914 

10−1
8 

2.119e-4 1.292e-4 6.466e-5 2.612e-5 9.193e-6 

 0.7143 0.9981 1.3077 1.5066 1.4910 

10−2
0 

1.060e-4 6.469e-5 3.307e-5 1.572e-5 6.309e-6 

 0.7120 0.9683 1.0730 1.3169 1.9464 

. . . . . . 

10−2
4 

2.650e-5 1.631e-5 9.064e-6 4.682e-6 2.294e-6 

 0.7006 0.8470 0.9530 1.0294 1.1270 

. . . . . . 

10−3
2 

1.656e-6 1.035e-6 5.823e-7 3.076e-7 1.576e-7 

 0.6776 0.8303 0.9208 0.9644 0.9884 

EN,
M 

3.462E-02 3.546E-02 1.531E-02 4.269E-03 1.676e-7 

 1.440 1.570 1.567 1.322 1.041 

P 
N,M 

1.656e-6 1.035e-6 5.823e-7 3.076e-7 1.576e-7 

 1.696 1.655 1.675 1.5644 1.6884 
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Table 2: Maximum point-wise errors and order of convergence for Example 6.2. 

ε ↓ Number of mesh points N = M 

 N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 

10−1 0.9875 

0.7629 

1.6417 

0.7554 

1.6419 

0.7540 

1.6414 

. 

0.7538 

1.6413 

0.7538 

1.6413 

1.6481e-2 

0.7829 

1.1578e-3 

1.6523 

0.9878 

0.7929 

1.6903 

0.7901 

1.6903 

0.7907 

1.6904 

. 

0.7906 

1.6904 

0.7906 

1.6904 

1.0402e-2 

0.7939 

3.4876e-4 

1.6904 

0.9947 

0.8127 

1.7062 

0.8090 

1.7071 

0.8088 

1.7073 

. 

0.8088 

1.7073 

0.8088 

1.7073 

5.8462e-3 

0.8327 

1.1596e-4 

1.7182 

0.9972 

0.8244 

1.7178 

0.8254 

1.7177 

0.8254 

1.7178 

. 

0.8254 

1.7178 

0.8254 

1.7178 

4.3853e-3 

0.8344 

3.4143e-5 

1.7378 

0.989 

0.9428 

1.8456 

0.8143 

1.9428 

0.9306 

1.9856 

. 

0.8452 

1.7856 

0.9856 

1.7156 

1.9118e-3 

0.8244 

9.9732e-6 

1.8258 

10−2 

10−3 

10−5 

. 

10−9 

10−1
0 

EN,
M 

P 
N,M 

EN,

M 

extp 

P 
N,M 

extp 
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