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ABTRACT

The purpose of this paper is to separate the f(y) functional derivatives by discarding all functional derivatives of
f(x,y) after using Taylor Series expansion to expand the fourth-stage fourth-order explicit Runge-Kutta method so as
to derive a reduced number of equations for easy computation. Efforts will be made to vary the parameters with the aim
of getting a new explicit fourth-order formula that can improve results when implemented on initial-value problems.
Efforts will also be made to carry out stability, convergence and consistency analysis and represent the derived
equations, their individual f(y) functional derivatives and their various elementary differentials on Butcher’s rooted
trees. This idea is derivable from general graphs and combinatorics.
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INTRODUCTION

This research centers on separating the rooted trees and equations generated from the y functional derivatives by
discarding all functional derivatives of f(x,y), so as to enable us see if we can adopt a simpler approach in deriving a
new explicit fourth-order Runge-Kutta formula that can improve results. It also has to do with the variation of the
parameters in the derived equations generated after using Taylor’s series expansion to expand the order. Scientific
implementation of the formula on initial-value problems of the form: y1 = f(x,¥), y(Xo) =¥o, a<x <b,is also
considered with a view to finding its stability, consistency and convergence. The essence is to see if the formula can
improve results.

Recent works on Runge-Kutta analysis include Agbeboh (2006,2010), Agbeboh, Ukpebor and Esekhaigbe (2009),
Esekhaigbe (2007) and Butcher(2003). More recent works are that of Van Der Houwen and Sommeijer ( 2013, 2014,
2015). The work of Butcher (1963,1966, 1987, 2009, 2010) revealed much successes in the analysis of explicit Runge-
Kutta methods and their transformation to rooted tree diagrams. This was because the continuation of the process of
Taylor Series gives rise to very complicated formulae. It was therefore, advantageous to use a graphical representation
for a convenient analysis of the order of a Runge — kutta method; hence, the basic tree theory was introduced. A tree is a
rooted graph which contains no circuits. The symbol T is used to represent the tree with only one vertex. All rooted
trees can be represented using T and the operation [ ty, ta,...,tm]. Hence, it is the differentials and equations derived that
are represented on trees so as to enable us compare the order condition with their differentials for varying parameters.

Conclusively, despite the fact that good, reliable explicit Runge-Kutta formulas exist, there is still need for their
transformation to rooted tree diagrams.

METHOD OF DERIVATION

From the general Runge-Kutta method, get a Fourth Stage-Fourth order method

Obtain the Taylor series expansion of k;,sabout the point (x,,, ¥,), 1=2,3,4,

Carry out substitution to ensure that all the k;.,S are in terms of k; only.

Insert the k;,s in terms of k; only into b;ky + byk, + bsks + b,k,

Separate all f(y) functional derivatives with their coefficients from all f(x,y) functional derivatives and their
coefficients.

Discard all f(x,y) functional derivatives and their coefficients.

Equate the coefficients of all f(y) functional derivatives with the coefficients Taylor series expansion involving
only f(y) functional derivatives of the form:

Ory ) = f+ Lffy+ D2+ Fh ol fhy + f5+ o) + SOy + 435 +
V22 fy 4 FA+ Fyy) (1)

As a result, a set of linear/non-linear equations will be generated. Represent those equations and their f( y) functional
derivatives on Butcher’s rooted tree.

Vary the set of equations to derive a new fourth-stage fourth-order explicit Runge-Kutta formula.
DERIVATION OF THE FOURTH-ORDER FOURTH-STAGE ERK METHOD
According to Lambert (1991), the general R—Stage Runge—Kutta method is:
Yn+1 = Yo+ h o Gy h),
¢ (n, Yo, h) = Ef1 by Ky,
ki = f(xy)
k, = f(x + hc,,y+h XiZla, k), r=2,3,...R

The formula is defined by the number of stages s, the nodes[c,]° _,, the internal weights [ars]r_1'55=1,r=z and the

external weights[b,.]° _,.
From the above scheme, the fourth stage fourth — order method is:
Vni1 = Yn + h (biky + byky, + b3ks + bnky)

ky = f (tn, yn)

ky = f (Xp+ 3 ¥ + haziky)
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ks = f (xq+ csh,yn + h(aziky + aszky))
ky = f (tpt+ cah,yp + h(asiky + agky + assks))
Using Taylor’s series expansion for k;s, we have:
kl = f (xn' Yn)
ky = Y0~ (coh =+ hagiky )T fCtn Yn)
2 r=o0 (€211~ 2181 nYn
ks = 52,2 (csh £+ h(asiky + @snky) ) F(x v)
3% Lr=o7; (cs Tx (agiky + aszk;) dy) f (Xn) Yn
ky= 27% ,(C4h + h(@uky + asky + aszks) - ) f s )

Hence, we have:

ky=f

2 3 4
ky = f + (c2hfy + hagiksfy) + 2 (cohfy + hagiksfy)” + 2 (c2hfy + hagiksfy) + = (c2hfy + hagkify) +
0(h)

2
ks = £+ (cshfy + h(agiks + asko) f;) + 5 (cshfy + h(asiks + asak) £,) + 5 (cshfy + h(asiks +
3 4
aszk;) fy) + %(CShfx + h(azik; + aszk;) fy) + 0(h®)

1 2
ky=f+ (C4hfx + h(agiky + ak, + assks) fy) + 5(C4hfx + h(agk, + ask; + assks) fy) +
1 3 1 4
§(C4hfx + h(agks + apk; + agsks) fy) + ;(Czthfx + h(agiki + agnk; + aszks) fy) + 0(h%)

Expanding fully and substituting the various ki’ s, i = 2, 3, 4 into their various positions in terms of k; only and
collecting like terms, in terms of y derivatives only and discarding all f(x, y) functional derivatives, we have:

h4

ky=f, = f+ ha21ffy a21f fyy a21f3fyyy 2 a§1f4fyyyy'

ks = f+h(as + as)ffy + h*ayas,ff7 + (a31 + 2a3.a3, + a32)f fyy + a21a32(a21
h3
2(az; + a32))f2fyfyy + 5(‘131 + 3a3,a3; + 3a31a32 + a3)f 3 fyyy + g(a32a21 + 3a31a32a21 + 3ada, +
h* h* h*
6a3103,21)f > fy fyyy + ;‘151‘132(‘131 + az)f3fh + ;agza%fzfyzfyy + Z(a‘;ﬁ' 4a3 a3, + 6a3,a3, +

4a31agz + agz)f4fyyyya

2
_ 2 2, R 2
ke =f+h(as+ g+ a)ffy + h*(a21a4; + 31043 + a32043)ffy + 7 (a4 + 2041042 + 2041043 +
3
2 2 \fF2 h 2 2 2
2a4,a43 + a3, + agz)f fyy + z(a21a42 + a51a43 + 203103, Quz + A35043 + 2051041 Auy + 2031041 sz +
2 2
2037041 Quz + 203104 Q3 + 2037047 Quz + 2051047 sz + 205,05, + 2a3,a53 +
h3

2 \f2 3 3 3 2 2 2 2

2az,a53)f fyfyy+h 1032 a43ffy + ;(a“ + 3a31a4; + 303143 + 304105, + 60414043 + 304,03 +
4

2 2 3 3 \¢3 h 3 2 2 2
3a4,a43 + 3a4a53 + az; + aiz)ffyyy + o (a31a43 + 3a3,a3,043 + 30310355043 + 30310504, +

2 2 2 2
3a31a41a43 + 303,041043 + 6031041057 + 6031041047043 + 6037041047043 + 6021041047043 + 303105043 +

3 2 2 2 2 2 2 2

(42051 + 303,Q5,043 + 6051055043 + 6a31a21a43 + 6a3,a41053 + 6a3104,053 + 6035045053 + 3051045053 +

3 3 3 \£3 h® . 2 2
3az1a33 + 3az1a33 + 3aza33)f fyfyyy + ;(a21a32a43 + 2031031037043 + 203103,043 + 2031035041043 +

2 2 2 2 2 2

2051037047043 + 2031031047043 + 2031037047043 + A53104, + 031037043 + a31043 + 2031035043 +

4
a32a43)f fy fyy 2 (a21a41a42 + a31a41a42 + 2a31a32a41a43 + a32a41a43 + a31a41a43 + 203103704503 +

a3,a5, '131'143 a31a43
a32a42a43 + BT + 20 + a31a32a43 )f fyy + o (a41 + 43104, + 4ad 045 + 6afi05; +
12a3,a4,a43 + 6a42a43 + 4a41a43 + 4a42a43+ 12“41“42‘143 + 2a41a42a43+ 6a41a43+ 4a3,a43t 4a4,a3,+ agt

a43) f £y yyyy

Putting the k;,s (v derivatives only) intoy,4q = Yp + h(biky + byk, + bsks + bk, whered(x,y,h) = bk, +
byk, + bsks + byk, and equating coefficients with the Taylor series expansion:
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Oryh) = f+ 2ff+ DGR+ A SGR Ly R )t S fy A
11f2f%fyy + [ 55+ [*fyyyy), we have the following equations:

by+ b, + b+ b, =1 (1)
byazi + bs(az, + azp) + by(as + astass) =% 2
bsay; + by(az1as; + ayz(az; + asy) =1/6 3)

1
bza%1 + b3(a§1 + 2az,a3; + a%z) + b4(aﬁ1 + 204104, + 2041043 + 2045043 + aiz + ais) =3

4)
b,a3;, + b3 (a3, + 3a3,a;; + 3az,a5; + a3;) + by(a3; + 3a%,a4; + 305,043 + 304105, + 60,104,043 +
303,43 + 3041053 + 304,053 + a3, +ady) =Y. Q)
b3a21a32(a21 + 2(az; + asz)) + by(af a4+ ay3(a31 + 32)° + 2051045(As1 + Aup + ay3) + 2a3143(ay; +
Ay + A43) +2035043(A41 + Aup + ayu3)) = 1/3 (6)
byay1a3,043 = 1/24 @)
Now from (1), setting by =bs = 1/6, by = b3 =2/6
(®) becomes: 2A+2B+P=3 (14)
(10)  becomes: 2A%2+2B*+P2=2
(15)
(11)  becomes: 2A3+ 2B+ P3=3/2
(16)
From (14), (15), (16)
A=, B=% P=1,
Hence (9) becomes: 2as, + a4, + az3 =2 17)
(13) becomes: Q35043 =2
(18)
(12) becomes: 6as, + 5a4, + a,; + 8ayza43 + 8ayu,a4; =8 (19)
From (18), let ays = § then as, = 1, From (17), a,, = —2, ButA=1%B=%P=1
Therefore,a21 = %,a31 + a32 = %, d a31 = _%, a41 + a4_2 + a43 = 1, a41 = 1
In conclusion,b; = 1/6, by = 2/6, b3 =2/6, by = 1/6
1 1 1
21 =5, 31 = =5 a3, =1, ay =1 ap= — Qa3 = 5
THE FOURTH- ORDER (Y DERIVATIVES ONLY) BECOMES:
h
Yne1 = Yn T g(kl + 2k, + 2k3 + ky) 0
kl = f(yn) 0 'yz
h
ky= f(yn +;k1)
0 -% 1
h
ks = f(yn +5 (ks + 2k3))
0 1 % %
h
ky= f(yn +;(2k1 — ky + k3))
1/6 1/3 1/3 1/6
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3.1 proof for stability of the method:

From the Formula above,

ky= 2y, ky = f(yn+5ks) = A0n +222
k= y(1+%)

ky = f(yn+§(—k1+2k2)> =,1(yn—@+22—“(/1y(1 +%")>>

272
ks = A (3 — 22+ hay +222)

2

ks = 2y (1 +h7’1+h222y)

Ayh
2

h hA Ayh hA | h2A?
ko= f (Y + 22k —ky +k3)) + A0n + hay =22 (1+2) + 22 1+ 24+ 20)

2 212 2 22.2 313
k4:l(yn+hly_ﬂ_h_y+ﬂ+h y+h—y)

2 4 2 4 4

ke = 2 (o + hiy +22)

4

ke =2y (1420 +22)

4

then, Ynss = yo = ~[ay + 22y (1+2) + 22y (1+ 2 +55) 4 2y (1 + 2y + 22|

Yne1 —Yn = }%h[l+2(l+h7l)+2(1+%+#)+1(1+1y+¥)]

Ayh

h323
Yner = ¥n = 2[6+ 320+ R2% + 1

Dividing by y and setting u = Ah, we have:

— 323
Ynt+1=Vn _ E[6 +31h + hZAZ + M]
Yn 6 4

2 3 4
M_lz[#+ﬂ_+#_+#_
Yn 2 6 24

y;—:l: 1+“+§+§+§=0

Hence, we have the stability polynomial, which is the same as the Classical fourth-order method.
Resolving the above polynomial using MAPLE, we have the complex roots as follows:
-1.72944423106770545660-0.88897437612186582717i,
-1.72944423106770545660+0.88897437612186582717i,
-0.27055576893229454343-2.50477590436243448970i,
-0.27055576893229454343+2.50477590436243448970i.

Plotting the complex roots on a graph (the real parts on the x-axis and the imaginary parts on the y-axis) using
MATLAB CODE, we have the absolute stability region seen in the diagram below:

Figure 1: Region of Absolute Stability For the fourth-Stage fourth-order ( (y) derivatives only)
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4.0 Implementation of the Formula and Results
The formula is implemented on the initial — value problems below with the aid of FORTRAN programming
language:
0 yr=-y yO)=10<x<1, yle) =5
(i) yvi =y y(0)=10<x<1 y(x,)=e™"
(i) y'=14+y% y(0)=1,0<x<1, y(x,) =tan(x, + "/,),h=0.1

TABLE 2 TABLES OF RESULTS

PROBLEM 1

XN YN TSOL ERROR

.1D+00  0.9048375000000D+00 0.9048374180360D+00 -.8196404044369D-07
2D+00 0.8187309014063D+00 0.8187307530780D+00 -.1483282683346D-06
.3D+00 0.7408184220012D+00 0.7408182206817D+00 -.2013194597694D-06
AD+00 0.6703202889175D+00 0.6703200460356D+00 -.2428818514089D-06
.5D+00  0.6065309344234D+00 0.6065306597126D+00 -.2747107467060D-06
.6D+00 0.5488119343763D+00 0.5488116360940D+00 -.2982822888686D-06
J7D+00  0.4965856186712D+00 0.4965853037914D+00 -.3148798197183D-06
.8D+00 0.4493292897344D+00 0.4493289641172D+00 -.3256172068089D-06
9D+00 0.4065699912001D+00 0.4065696597406D+00 -.3314594766990D-06

AD+01  0.3678797744125D+00 0.3678794411714D+00 -.3332410563051D-06

PROBLEM 2

XN YN TSOL ERROR

.1D+00 0.1105170833333D+01 0.1105170918076D+01 0.8474231405486D-07
.2D+00 0.1221402570851D+01 0.1221402758160D+01 0.1873094752636D-06
3D+00  0.1349858497063D+01 0.1349858807576D+01 0.3105134649406D-06
A4D+00 0.1491824240081D+01 0.1491824697641D+01 0.4575605843105D-06

.5D+00  0.1648720638597D+01 0.1648721270700D+01 0.6321032899326D-06
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.6D+00 0.1822117962092D+01 0.1822118800391D+01 0.8382985758892D-06

.7D+00 0.2013751626597D+01 0.2013752707470D+01 0.1080873699877D-05

.8D+00 0.2225539563292D+01 0.2225540928492D+01 0.1365200152481D-05

.9D+00 0.2459601413780D+01 0.2459603111157D+01 0.1697376878607D-05

.1D+01 0.2718279744135D+01 0.2718281828459D+01 0.2084323879270D-05

PROBLEM 3

XN

YN TSOL ERROR

.1D+00 0.1223051005569D+01 0.1223048880450D+01 -.2125119075158D-05

.2D+00 0.1508502732390D+01 0.1508497647121D+01 -.5085268468541D-05

3D+00 0.1895771003842D+01 0.1895765122854D+01 -.5880987590245D-05

A4D+00  0.2464942965339D+01 0.2464962756723D+01 0.1979138375674D-04

.5D+00  0.3407951033347D+01 0.3408223442336D+01 0.2724089890727D-03

.6D+00 0.5328707710968D+01 0.5331855223459D+01 0.3147512490389D-02

.7D+00 0.1159500710295D+02 0.1168137380031D+02 0.8636669735614D-01

.8D+00 0.2841447010395D+03 -.6847966834558D+02 -.3526243693850D+03

.9D+00 0.8635045424394D+20 -.8687629546482D+01 -.8635045424394D+20

.1D+01 0.1640237043432+300 -.4588037824984D+01 -.1640237043432+300

FINDINGS AND CONTRIBUTION TO KNOWLEDGE

This study reveals that expanding f(y) functional derivatives can generate a formula that can improve the performance
of results. After our implementation, it shows from the tables of numerical results that the method is highly efficient.
The proof for stability also shows that the method is absolutely stable. The stability polynomial and stability curve also
show that our method compares favourably well with the well known classical fourth-order Runge-Kutta method, and
as such, generating more accurate results when implemented on initial-value problems in ordinary differential
equations.
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