DOI: https://doi.org/10.53555/nnms.v8i9.1033

Publication URL: http://nnpub.org/index.php/MS/article/view/1033

GENERALISED SEMI CLOSED SETS IN GRILL TOPOLOGICAL SPACES

S. Vibin Salim Raj^{1*}, V. Senthil kumaran², Y. Palaniappan³

*1 M. Phil, Scholar, Arignar Anna Government Arts College, Musiri, Tamilnadu, India Email: rajvibin10@gmail.com

2Associate Professor of Mathematics, Arignar Anna Government Arts College, Musiri, Tamilnadu, India. Email:

vsenthil1966@gmail.com

³Associate Professor of Mathematics (Retd.), Arignar Anna Government Arts College, Musiri, Tamilnadu, India Email: palaniappany48@gmail.com

Corresponding Author: -

Email: rajvibin10@gmail.com

Abstract: -

The purpose of this paper is to introduce and investigate a new class of generalized semi closed sets in terms of Grill G on X. The characterization of such sets along with certain other properties of them are obtained.

Keywords: gs closed, topology ${}^{\tau}G$, operator ${}^{\varphi}$, $G_{(gs)^*}$ closed. 2010 AMS subject classification: 54B05, 54C05

Distributed under Creative Commons CC BY-NC 4.0 OPEN ACCESS

1. INTRODUCTION

It is found from literature that during recent years many topologists are interested in the study of generalized types of closed sets. For instance, a certain form of generalized closed sets was initiated by Levine [6] whereas the notion of generalized *semi closed (g*s closed) set was studied by Veerakumar [9]. Following the trend, we have introduced and investigated a kind of generalized closed sets, the definition being formulated in terms of grills. The concept of grill was introduced by Choquet [1] in the year 1947. From subsequent investigations it is revealed that grills can be used as an extremely useful device for investigation of a number of topological problems.

2. PRELIMINARIES

Definition 2.1: A nonempty collection G of non-empty subsets of a topological space X is called a grill [1] if

- (i) $A \in G$ and $A \subseteq B \subseteq X \Rightarrow B \in G$ and
- (ii) A, B \subset X and A \cup B \in G \Rightarrow A \in G or B \in G

Let G be a grill on a topological space (X, τ) . In [7] an operator $\phi: P(X) \to P(X)$ was defined by

 $\phi(A) = \{x \in X \mid U \cap A \in G, \forall U \in \tau(x)\}, \tau(x) \text{ denotes the neighborhood of } x. \text{ Also the map } \psi : P(x) \to P(x), \text{ given by } \psi(A) = A \cup \phi(A) \text{ for all } A \in P(X) \ .$

Corresponding to a grill G, on a topological space (X, τ) there exists a unique topology τ_G on X given by $\tau_G = \{U \subseteq X \mid \psi(X \setminus U) = X \setminus U\}_{where \ for \ any} \ A \subseteq X, \psi(A) = A \cup \phi(A) = \tau_G - cl(A)$.

Thus a subset A of X is τ_G -closed (resp. τ_G -dense in itself) if ψ (A)= A or equivalently if $\phi(A) \subseteq A$ (resp. $A \subseteq \phi(A)$)

In the next section, we introduce and analyse a new class of generalized closed sets, namely G(gs)* closed sets, in terms of a given grill G, the definition having a close bearing to the above operator ϕ .

We introduce and investigate the notion of (gs)* continuous functions in grill topological spaces. Also, we investigate the relationship with other functions.

Throughout the paper, by a space X we always mean a topological space (X,τ) with no separation properties assumed. If $A \subseteq X$, we shall adopt the usual notations int(A) and cl(A) respectively for the interior and closure of A in (X,τ) . Again $\tau_G - \text{Cl}(A)$ and $\tau_G - \text{int}(A)$ will respectively denote the closure and interior of A in (X,τ_G) . Similarly, whenever we say that a subset A of a space X is open (or closed) it will mean that A is open (or closed) in (X,τ) . For open and closed sets with respect to any other topology on X, eg. τ_G , we shall write τ_G - open and τ_G -closed. The collection of all open neighborhoods of a point x in (X,τ) will be denoted by $\tau(x)$.

 (X, τ, G) denotes a topological space (X, τ) with a grill G.

Definition 2.2: Let (X,τ) be a topological space. A subset A of X is said to be

- (1) semiclosed if int $cl(A) \subseteq A$
- (2) generalized closed (g closed) of $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (3) generalized semi closed (gs closed) of scl $A \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (4) θ -closed if $A = \theta$ cl A where

$$\theta \; \text{cl} \; A = \{x \; \textbf{\in} \; X : \text{cl}(U) \; \cap \; A \; \neq \; \varphi \;, \; \forall \; U \; \in \; \tau \; \text{and} \; \; x \; \in \; U \; \}$$

(5) δ -closed if $A = \delta$ cl A where

$$\delta$$
 cl A = {x \in X; int cl (U) \cap A \neq ϕ , \forall U \in τ and x \in U}

The complements of the above closed sets are respective open sets.

Definition 2.3: A function $f:(X, \tau) \to (Y, \sigma)$ is said to be

- (1) gs continuous if $f^{-1}(U)$ is gs open in X, for every open set U of Y.
- (2) θ continuous if $f^{-1}(U)$ is θ open in X, for every open set U of Y.
- (3) δ -continuous if $f^{-1}(U)$ is δ -open in X for every open set U of Y.

Definition 2.4: A function $f:(X,\tau) \to (Y,\sigma)$ is said to be

- (1) (gs)* closed if f(F) is (gs)* closed in Y, for every closed set F of X,
- (2) τ_G closed if f(F) is τ_G closed in Y, for every closed set F of X.
- (3) θ closed if f(F) is θ closed in Y, for every closed set F of X.
- (4) δ closed if f(F) is δ closed in Y, for every closed set F of X.

Theorem 2.5: [7] Let (X,τ) be a topological space and G be a grill on X. Then for any A, B \subseteq X following hold

- (a) $\overrightarrow{A} \subseteq B \Rightarrow \phi(A) \subseteq \phi(B)$
- (b) $\phi(A \cup B) = \phi(A) \cup \phi(B)$
- (c) $\phi(\phi(A) \subseteq \phi(A) = cl(\phi(A)) \subseteq cl(A)$

3. G(gs)* CLOSED SETS

Definition 3.1: A subset A of a topological space (X,τ) is said to be $(gs)^*$ closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs open in X.

Definition 3.2: Let (X,τ) be a topological space and G be a grill on X. Then the subset A of (X,τ) is said to be $(gs)^*$ closed with respect to a grill $G(G(gs)^*$ closed) if $\phi(A) \subseteq U$ whenever $A \subseteq U$ and U gs open in X. The complement of $G(gs)^*$ closed set in X is called $G(gs)^*$ open in X.

Theorem 3.3: Let (X,τ) be a topological space and G be a grill on X. Then

- (1) Every closed set in X in $G(g_S)^*$ closed
- (2) For A, $G(g_S)^*$ closed in X, ϕ (A) is $G(g_S)^*$ closed.
- (3) Every τ_G closed set is $G(g_S)^*$ closed.
- (4) Any non-member of G is $G(gs)^*$ closed.
- (5) Any $(gs)^*$ closed set is $G(gs)^*$ closed.
- (6) Every θ closed set is G(gs)*closed.
- (7) Every δ closed set is $G(gs)^*$ closed

Proof:

- (1) Let A be closed. Then cl (A) = A. Let $A \subseteq U$ where U is gs open.
- $\phi(A) \subseteq cl A = A \subseteq U$. A is $G_{(gs)}^*$ closed.
- (2) A is $G(gs)^*$ closed closed. $\phi(A) \subseteq U$, U is gs open. $\phi(\phi(A)) \subseteq \phi(A) \subseteq U$. Hence $\phi(A)$ is $G(gs)^*$
- (3) Let A be τ_G closed. Let $A \subseteq U$, where U is gs open. As A is τ_G closed, $\phi(A) \subseteq A \subseteq U$. Hence A is $G(g_S)^*$ closed.
- (4) Let $A \notin G$. Let $A \subseteq U$, U is gs open. ϕ $(A) = \phi \subseteq U$. Hence A is $G(gs)^*$ closed.
- (5) Let $A \subseteq U$, U is gs open. A is (gs)* closed. Hence cl $A \subseteq U$. So $\phi(A) \subseteq \text{cl } A \subseteq U$. Therefore A is G(gs)* closed.
- (6) Let $A \subseteq U$, U is gs open. A is θ closed $\phi(A) \subseteq \operatorname{cl} A \subseteq \theta \subseteq \operatorname{cl} (A) = A \subseteq U$. Hence A is $G(gs)^*$ closed.
- (7) Let $A \subseteq U$, U is gs open A is δ closed ϕ (A) \subseteq cl $A \subseteq \delta$ cl $A = A \subseteq U$. Hence A is $G(gs)^*$ closed. The converse of the above statements need not be true can be seen from the following examples.

Example 3.4: Let
$$X = \{a, b, c\}$$

 $\tau = \{\phi, \{a\}, \{a, b\}, X\}$

 $G = \{\{a\}, \{a, b\}, \{a, c\}, X\}, A = \{b\}. Let A \subseteq U where U is gs open.$

 ϕ (A) = ϕ \subset U. Hence A is $G(g_S)^*$ closed but not A = {b} is closed.

Example 3.5: Let
$$X = \{a, b, c\},\$$

$$\tau = \{\phi, \{a\}, X\}, G = \{\{a\}, \{a, b\}, \{a, c\}, X\}$$

$$A = \{a\}, \phi(A) = \{a, b, c\} \not\subseteq \{a\}.$$

A is not $G_{(gs)}^*$ closed. $\phi(A)$ is $G_{(gs)}^*$ closed.

Example 3.6: Let $X = \{a, b, c\},\$

$$\tau = \{\phi,\,\{a,\,b\},\,X\}$$

$$G = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$$

 $A = \{b, c\} A \text{ is } G(gs)^* \text{ closed but not } \tau_G \text{ closed.}$

Example 3.7: Refer example 3.6

A is G(gs)* closed but not a nonmember.

Example 3.8: Refer example 3.5 Let $G = \{\{b, c\}, X\}$

A is $G(g_S)^*$ closed but not $(g_S)^*$ closed.

Example 3.9: Refer example 3.5

A is $G(g_S)^*$ closed but not \square closed.

Example 3.10: Refer example 3.5

A is $G(gs)^*$ closed but not δ closed.

Lemma 3.11 : Let (X,τ) be a space and G be a grill on X. If $A \subseteq X$ is

 $\tau_{\text{G}}-\text{dense}$ in itself, then

$$\phi(A) = cl \phi(A) = \tau_G - cl(A) = cl(A)$$

Theorem 3.12: Let (X,τ) be topological space and G be a grill on X. Then for $A \subseteq X$, A is $G(gs)^*$ closed iff $\tau_G - cl(A) \subseteq U$, $A \subseteq U$ and U is gs open.

Proof: Suppose A is $G(g_S)^*$ closed. Then $\phi(A) \subseteq U \Rightarrow A \cup \phi(A) \subseteq U$. Therefore, $\tau_G - cl(A) \subseteq U$, $A \subseteq U$ and U is gs open.

Conversely $\tau_G - cl(A) \subseteq U$, $A \subseteq U$, U is gs open

Therefore $A \cup \phi(A) \subseteq U \Rightarrow \phi(A) \subseteq U$. Hence A is $G(g_S)^*$ closed.

Theorem 3.13: Let G be a grill on a space (X,τ) . If A is τ_G -dense in itself and $G(g_S)^*$ closed implies A is $(g_S)^*$ closed.

Proof: Let A be τ_G -dense in itself, then by lemma 3.1, ϕ (A) = cl(A).

Since A is $G(g_S)^*$ closed, $\phi(A) \subseteq U$ where U is gs open in X and $A \subseteq U$.

Therefore $cl(A) \subseteq U$ where U is gs open in X and $A \subseteq U$. Hence A is $(gs)^*$ closed.

Theorem 3.14: For any grill G on space (X,τ) the following are equivalent.

- (a) Every subset of X is $G(gs)^*$ closed.
- (b) Every gs open subset of (X,τ) is τ_G -closed.

Proof: (a) \Rightarrow (b)

Let A be gs open in (X,τ) . Then by (a), A is $G(gs)^*$ closed, so that $\phi(A) \subseteq A$. Therefore A is τ_G -closed.

(b) \Rightarrow (a). Let $A \subseteq X$ and U be gs open in (X,τ) such that $A \subseteq U$. Then (b), $\phi(U) \subseteq U$.

Also, $A \subseteq U \Rightarrow \phi(A) \subseteq \phi(U) \subseteq U$

There A is $G(gs)^*$ closed.

Theorem 3.15: Let (X,τ) be a topological space and G be a grill on X and A, B be subsets of X such that $A \subseteq B \subseteq \tau_G - cl(A)$. If A is $G(g_S)^*$ closed then B is $G(g_S)^*$ closed.

Proof: Suppose $B \subseteq U$ and U is gs open in X. Since A is $G(gs)^*$ closed.

 $\phi(A) \subseteq U \Rightarrow \tau G - cl(A) \subseteq U \dots (1)$

Now, $A \subseteq B \subseteq \tau G - cl(A)$ which implies $\tau_G - cl(A) \subseteq \tau_G - cl(B) \subseteq \tau_G - cl(A)$.

Therefore $\tau_G - cl(A) = \tau_G - cl(B)$

Therefore by (1) τ_G – $cl(B) \subset U$. Hence B is $G(g_S)^*$ closed.

Corollary 3.16: τ_G -closure of every $G(g_S)^*$ closed set is $G(g_S)^*$ closed.

Theorem 3.17: Let G be a grill on a space (X,τ) and A, B be subsets of X such that $A \subseteq B \subseteq \phi(A)$. If A is $G(gs)^*$ closed then A and B are gs closed.

Proof: Let $A \subseteq B \subseteq \phi(A)$, then $A \subseteq B \subseteq \tau G - cl(A)$. By theorem 3.15, B is $G(gs)^*$ closed. Again $A \subseteq B \subseteq \phi(A) \Rightarrow \phi(A) \subseteq \phi(B) \subseteq \phi(\phi(A)) \subseteq \phi(A)$. This implies that $\phi(A) = \phi(B)$. By theorem 3.13, A and B are gs closed.

Theorem 3.18: Let G be a Grill on a space (X,τ) . Then a subset A of X is $G(gs)^*$ open iff $F \subseteq \tau_G$ - int (A) whenever $F \subseteq A$ and F is gs closed.

Proof: Let A be $G(g_S)^*$ open set and $F \subseteq A$ where F is gs closed. Then $X \setminus A \subseteq X \setminus F$. This implies that $\phi(X \setminus A) \subseteq \phi(X \setminus F) = X \setminus F$. Hence $\tau_G - \operatorname{cl}(X \setminus A) \subseteq X \setminus F$ which implies $F \subseteq \tau_G - \operatorname{int}(A)$ Conversely, $F \subseteq \tau G - \operatorname{(int}(A))$, $\tau G \operatorname{cl}(X - A) \subseteq X - F$, $\phi(X - A) \subseteq X - F$, A is $G(g_S)^*$ open.

Remark 3.19:

- (a) Every continuous function is gs continuous.
- (b) Every gs continuous function is $G(gs)^*$ continuous.

Example 3.20: Refer example 3.5

Define f: $(X, \tau, G) \rightarrow (X, \tau)$ by f(a) = c, f(b) = a, f(c) = b f is gs continuous but not continuous as $f^{-1}(\{a\}) = \{b\}$ is not open. Define f by f(a) = c, f(b) = a, f(c) = a, f is $G(gs)^*$ continuous but not gs continuous as $f^{-1}(\{a\}) = \{b, c\}$ is not gs open.

Remark 3.21: Every \square -continuous function is $G(g_S)^*$ continuous.

Example 3.22: Refer example 3.5

Define $f: (X, \tau, G) \to (X, \tau)$ by f(a) = c, f(b) = a, f(c) = a. f is $G(gs)^*$ continuous but not \square continuous as $f^{-1}(\{a\}) = \{b, c\}$ is not \square open.

Remark 3.23: Every δ -continuous function is $G(gs)^*$ continuous.

Example 3.24: Refer example 3.22

f is $G(gs)^*$ continuous but not δ continuous as $f^{-1}(\{a\}) = \{b, c\}$ is not δ open.

Definition 3.25: τ_G , (gs)* closed function.

A function f: $(X,\tau) \square (Y,\tau,G)$ is said to be $\tau_G(gs)^*$ closed if f(A) is $\tau_G(gs)^*$ closed in Y for every closed set A in X.

Definition 3.26: A function $f: (X,\tau) \square (Y,\tau,G)$ is said to be $\square \square$ closed if f(A) is \square closed in Y for every closed set A in X.

Definition 3.27: A function $f: (X,\tau) \square (Y,\tau,G)$ is said to be δ closed if f(A) is δ closed in Y for every closed set A in X.

Definition 3.28: A function $f: (X,\tau) \square (Y,\tau,G)$ is said to be $\phi(G(gs)^*)$ closed if f(A) is $\phi(G(gs)^*)$ closed in Y for every closed set A in X.

Theorem 3.29:

- 1. Every closed function is $G(g_S)^*$ closed function.
- 2. Every $G(gs)^*$ closed function is $\phi(G(gs)^*)$ closed function.
- 3. Every τ_G closed function is $G(gs)^*$ closed function.
- 4. Every $(gs)^*$ closed function is $G(gs)^*$ closed function.
- 5. Every \square closed function is $G(gs)^*$ closed function.
- 6. Every δ closed function is $G(g_S)^*$ closed function.

Proof: Obvious

The converse of the above statements need not be true can be seen from the following examples.

Example 3.30: Refer example 3.4

Define $f: (X, \tau) \square (X, \tau, G)$ by f(a) = a, f(b) = c, f(c) = b. f is G(gs)*closed but not closed as $f(\{c\}) = \{b\}$ is not closed in X.

Example 3.31: Refer example 3.4

Define $f: (X, \tau) \Box (X, \tau, G)$ by f(a) = a, f(b) = c, f(c) = b. f is $\phi G(gs)^*$ closed function but not $G(gs)^*$ closed function as $f(\{c\}) = \{a\}$ is not $G(gs)^*$ closed.

Example 3.32: Refer example 3.6

Let $f:(X,\tau) \square (X,\tau,G)$ be the identity function f is $G(gs)^*$ closed function but not τG closed function as $f(\{b,c\}) = \{b,c\}$ is not τG closed.

Example 3.33: Refer example 3.6

Define $f: (X, \tau) \square (X, \tau, G)$ by f(a) = b, f(b) = a, f(c) = a. f is $G(gs)^*$ closed function but not $(gs)^*$ closed function.

Example 3.34: Refer example 3.6

Define $f: (X,\tau) \square (X,\tau,G)$ by f(a) = b, f(b) = a, f(c) = a. f is $G(gs)^*$ closed function but not $(gs)^*$ a closed function as $f(\{b,c\}) = \{a\}$ is not $(gs)^*$ closed.

Example 3.35: Refer the previous example, f is $G(gs)^*$ closed function but not \square closed function as $f(\{b,c\}) = \{a\}$ is not \square closed.

Example 3.36: Refer the previous example, f is $G(g_S)^*$ closed function but not δ closed function as $f(\{b,c\}) = \{a\}$ is not δ closed.

Theorem 3.37: If $f:(X,\tau)$ θ (Y,σ) is closed and $g:(Y,\sigma)$ θ (Z,η,G) is $G(gs)^*$ closed then $g \circ f:(X,\tau)$ θ (Z,η,G) is $G(gs)^*$ is closed.

Theorem 3.38: A map $f: X \square Y$ is $G(gs)^*$ closed if and only if for each subset S of Y and each open set U of X such that $f^{-1}(S) \subseteq U$, there is a $G(gs)^*$ open subset V of Y such that $S \subset V$ and $f^{-1}(V) \subseteq U$.

Proof: Let f be $G(g_S)^*$ closed. Let $S \subseteq Y$ and U be an open set of X such that $f^{-1}(S) \subseteq U$. X - U is closed in X. f(X - U) is $G(g_S)^*$ closed in Y. V = Y - f(X - U) is $G(g_S)^*$ open in Y.

 $f^{-1}(V) = X - f^{-1}(f(X - U)) \subset X - (X - U) = U$

Conversely, let F be closed in X. $f^{-1}(f(F^c)) \subseteq F^c$ and F^c is open in X.

By assumption, there exists a $G(gs)^*$ open subset V of Y such that $f(F^c) \subset V$ and $f^{-1}(v) \subseteq F^c$. This implies F

```
 \subseteq (f^{-1}(V))^c \\ \text{Hence } V^c \subseteq (f(F^c))^c = f(F) \subseteq f(f^{-1}(V))^c \subseteq V^c \\ \text{So, } f(F) = V^c, \text{ which is } G(g_S)^* \text{ closed.}
```

Definition 3.39: Let X and Y be topological spaces. A map $f: X \square Y$ is called $G(gs)^*$ open map if the image of every open set of x is $G(gs)^*$ open in Y.

Theorem 3.40: For any bijection map $f: X \square Y$, the following are equivalent.

 $(1)f^{-1}: Y \square X \text{ is } G(gs)^* \text{ continuous map}$

(2) f is $G(g_S)^*$ open map

(3) f is $G(g_S)^*$ closed map

Proof: $(1) \Rightarrow (2)$:

Let U be open in X $(f^{-1})^{-1}(U)$ is $G(g_S)^*$ open in Y. That is f(U) is $G(g_S)^*$ open in Y.

 $(2) \Rightarrow (3)$:

Let F be a closed set of X. Then F^c is open in X.

By assumption

 $f(F^c)$ is $G(g_S)^*$ open in Y. $f(F^c) = (f(F))^c$ is $G(g_S)^*$ open in Y.

f(F) is $G(g_S)^*$ closed in Y.

 $(3) \Rightarrow (1)$:

Let F be closed in X. f(F) is $G(gs)^*$ closed in Y. $f(F) = (f^{-1})^{-1}$ (F) is $G(gs)^*$ closed in Y. Hence f^{-1} is $G(gs)^*$ continuous map.

References:

- [1]. G Choquet, "Sur les notions de filter et grille", comptesRendus Acad. Sci. Paris, 224(1947), 171-173.
- [2]. DhananjoyMandal and M.N. Mukherjee, "On a type of generalized closed sets", Bol. Soc. Paran. Mat. 301 (2012), 67-76.
- [3]. J. Dontchev and T.Noiri, "Quasi Normal spaces and $\square g$ -closed sets", Acta. Math. Hunger, 89(3) (2000), 211-219.
- [4]. J. Dontchev and H. Maki, "On $\hfill\Box$ -generalized closed sets", Topology Atlass.
- [5]. S. Fomin, "Extensions of topological spaces", Ann. Math, 44 (1943), 471-480.
- [6]. N. Levine, "Generalized closed sets in topology", Rend. cire. Mat, Palermo, (2), 19(1970), 89–96.
- [7]. B. Roy and M.N. Mukherjee, "On a typical topology induced by a grill", Sooochow J. Math, 33(4) (2007), 771-786.
- [8]. M.H. Stone, "Application of the theory of Boolean rings to general topology", Trans, Amer, Math. Soc., 41 (1937), 374-481.
- [9]. M.K.R.S. Veerakumar, "Between closed and g closed sets," Mem. Fac. Sci Kochi. Univer. Math vol 21(2000), 1-19.