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Abstract: -

In this paper, we developed a new family of self-starting second derivative Simpson’s type block methods (SDSM) of
uniform order p =2k +2 for step number k < 6 . The new block methods for k = 2, 3,...,6 were seen to possess
good stability property as they possessed good regions of absolute stability. They were also found to be consistent, zero
stable and A-stable (Fig.4). This essential property made them suitable for the solution of stiff system of ordinary
differential equations. Four numerical examples were considered and results obtained show improved accuracy in terms
of their Maximum absolute errors when compared with the work of existing scholars. The newly developed block methods
were seen to approximate well with the stiff Ode Solver (Fig. 5, 6, 7 and 8).
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1. INTRODUCTION

One major concern of the computational scientist is the numerical integration of stiff ordinary differential equations. Most
real-life problems are modeled into system of ordinary differential equations, some of these equations exhibit behavior
known as stiffness. Interest in stiff systems appeared initially in the 20" century in radio engineering (e.g the Van der Pol
problem). One of the first attempts to cope with the difficulties of stiffness was suggested by [8].

Recently, [30] introduced Second derivative Simpson’s block method for k = 2 for stiff ODEs of the form

) = o, y(0)y(x) = v @)

on the interval 1= [xo_,x_\,], where V- [xo,x_\_.]—>R’” andf:[xo,xy]xR’” —>R".

A potentially good numerical method for the solution of stiff systems of ODEs must have good accuracy and reasonable
wide region of absolute stability [9].

The search for efficient, more accurate higher order A-stable block methods for the solution of stiff ODEs is now evolving
[3, 4,8, 14, 15, 18 and 24]. It is for this reason that we developed more efficient methods that should address the problem
of stiffness.

Lemma 1.1

Equation (1.1) is called stiff differential equation if its Jacobian (in the neighborhood of the solution) has

maX‘Re }L,| =0

that is if

eigenvalues that verify min[Re,
(1) Re, <0,i=12,...,m and

max [Re 4|
(11) i=1.2,..., 71 -~ 0

Proof

To prove lemma 1.1, we consider a system of first order ordinary differential equations
y]’ = 70-1}’1 - 0-4}’3

i =50y,

J2

¥y =70y, =120y,

Then the Jacobian

&y &y, &y, -0.1 —04 0
af, of, of,
g gi o (/2% I 50 0
oy av, av,
o, of, af, 0 70 —120
oy, av, av,
—0.4-1 — 044 0
Now, |JA 1| = 0 -504-1 0
0 70 1204 -1

clearly, condition (i) and (ii) is satisfied with stiffness ratio S =1.25x10°

We extended the idea in [30] for k = 3,4,...,6 and investigated their stability property; we also
implemented the new block methods on some stiff ODEs occurring in real life.

The Conventional Second Derivative Linear kMuItistep Methgd (SDLMM) is written in the form

Z ¢iJ',11+l = ]?Z @f-fnﬂ' _HL'?E Z V/Lj;':ﬂ
i=0 i=0 i=0 (1.2)

T
where, ¢, pand v, are coefficients of the methods to be determined and fn—f = Vaeir

A lot of scholars have considered the computational treatment for the solution of (1.1) through the second derivative
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method for instance [10, 11, 12, 18, 21, 25, 26 and 30].

Block methods were introduced to both improve the stability of methods and provide the k -1 Starting values to k - step
LMM. They are usually set of LMMSs simultaneously applied to (1.1) and then

combined to yield better approximations. They have the capacity to generate simultaneously k approximate solutions.
Some of the scholars that have written extensively on block methods include but not limited to the following [1, 5, 7, 10,
13, 17, 27, 28 and 29].

This paper is organized in the following manner. Section 2 will contain a discussion of the derivative of the methods with
some few definitions, theorems and proofs. Section 3 contains the stability property of the family of second derivative
Simpson’s type block methods. In section 4, we shall present some numerical examples to showcase the efficiency and
accuracy of the methods, while section 5 shall consists of discussion of results and conclusion.

2. METHODOLOGY

Our interest in this paper is to extend the idea in [30] to derive and implement a family of Second Derivative Simpson’s
type block Methods (SDSM) on (1.1) for k = 2,3,...,6 . This can be achieved through the derivation of a class of main
methods and their associated additional methods.

In the spirit of [30], we constructed the main method for SSDSM in the form ¥Yni1 y, 71 h :jj 20 fno j
k k
Voo =V =0 0 fr A0 ) i=23,..6
Jj=0 J=0

?;

21)

8 L. :
and Vi are coefficients of the methods to be determine. We also have that
.yaHi = .y(xnﬂ' )

where,

fn+i = f(xnﬂ' ’ y(xnﬂ' ))

P LGN C) R
dx 2.2)

where, ypy +j is an approximation to the theoretical solution y(xp +j) -
Then the additional method can be constructed in the form

}I’f+l )nihz@fnJrj‘Fh ZWfM+J,i*23 6
(2.3)

2.1 Specification of the methods
In other to specify the methods (2) and (3), we seek a continuous interpolant of the SDSM to approximate the theoretical
solution of (1.1). We assume that the solution of (1.1) is in the range | =(x by interpolating the function

2k+2

yx)=hY rx
i=0

0¥ )

(2.4)

where, i are unknown coefficients of the method to be computed. The continuous SDSM is constructed by imposing

the following conditions
k
Do =k
i. =0 , that is, summation of the coefficients of fn+j of the main method is equal to the step number k.

. r -
ii. The coefficients of Jrar1 =00k of the main method and those of the first characteristic polynomial

are somewhat symmetric.

iii. y(x )=y,
iv. V'(x,..)=f,..i=0L..6

v. }}”(xn+z ) = f;;+i "j = 0’1’""’6

The conditions stated above are then used to solve for *: . The continuous SDSM is derived by

substituting the values of Ti into equation (2.4). After some manipulations, the continuous approximation is expressed
in the form
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k k
VX)) =y, +hY 0 () [, 7D v () ]
=0 J=0 (2.5)

X=X 1= l"' '-’6 > we obtained the desire set of main method and its associated final additional

Evaluating (2.5) at

methods.
Accordingly, we presented the following set of Equations.

Main Methods
order 2k +2 =6 (SSDSM)

h hoo, ,
yr’HZ _.yn = E(7fn+2 + 16-f;1+1 + 7fn)_E(-f;'z+2 - fn)
order 2k +2=8 (ESDSM)

h h*
poa— v, =—(93 +243f ., +243 +93f)———=(57f] ., -81f. ., +81f  —57f
.}n+3 .)n 224( fn+3 fn+- fn+1 fn) 1120( .fm+3 .ﬁz+_ .f;al fn)

order 2k+2 =10 (ISDSM)
h h*
)y —V, =——(3202f ., +8192 f ., +11232 f , +8192f . +3202f)— 116 1/,
Yors =V 8505( Sres Ses /. Srus 5 2835( Sosa
=S512f 4512 116 f))

n+3

order 2k +2=12 (T"SDSM)

Vs —V, = 912]/1384 (319085 f, . + 691875 f ., +1270000 f, ., +1270000 f, , +691875 f, ,

1319085 Jﬁq)m;@g(swﬁ f1 314375 f1, 272500 £, + 272500 f7., + 314375 [,

~36975 )

Additional Methods
order 2k +2=6 (SSDSM)
h?

3f,+40f  —13f)
240( fn+A fn+1 fn)

h .
p =y, =——(1f ,+128f  +101f )—
}VHI .}n 240( frﬁm fn+1 Jrn)

order 2k +2 =8 (ESDSM)

Voez = Vs - (20,3 #3511, +540 1, +223fn)——h- (B[ + 171, +144 1, =43 1)
567 945 ’
h h*
) -y =—(397 2403 f,., + 8451 6893 f)———— (163 !, +2421 1!,
J’JH—l J’n 18144( f‘n+3+ fn+_+ fn+1+ fn) 30240( fn+3+ fn+;+

7659 1., — 1283 £7)

order 2k +2=10 (ISDSM)
h h
SV = 411 +11376 +20736 f ., +14736 +6501f )— 451+
.}n+$ } n 17920 ( fn+4 fn+3 fn+_ -fn+1 fn) 8960 ( -f;z+4

1464 1, +2268 f,, +2232 £/, =339 1)

n+3 ntl

2

h h
)y — ¥, =—— (1153 +12608 +44928 f ., +52928 f, . +24463 f )— 431!
}n+- S n 68040( fn+4 fn+3 fn+- fnl f) 11340( f 4
+992 f . +4536 ), +3040 1], —4211))

h
=y, =—— (596811 ., +613456 + 711936 f,,, +1429936 +1539551
.}n+l .}re 4354560 ( fn+4 j;1+3 fn+_ fn+l f;z)

hl
— 2237 f7 , +49720 f7 . +183708 £ , +249656 [  —26051f!
725760 ( f;ﬁ»-l f;’i+3 n+2 fn+l fn)

order 2k +2 =12 (T"SDSM)
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Vo=V, = %(336]:”5 +13910 f, ., +31360 f, ., +22560 f, , +13360 f, ., +75741)
LAY S 1492 1 +3456 £+ 6400 [, +3744 f1 —340 11
10395 . -
h
» o=y, =—— (16617 f .+ 284775 +1316400 +1316400 f ., +812775 f, .
.}11+3 .}u 1408000 ( f;1+_ f;1+4 fn+3 fn+- fn 1
+477033 /) — 98;?600 (24217 +T9875 !, + 518340 £, + 664380 £, +363645 f'
~31989 1)
Von =V, = 9734 f.s+161325 . +407200 £, +407200 £, , +495450 1
- 891000 ) )
+301091 f,)— 1{.:800 (948 1! . +30610 f) , +173840 f! . +325120 f/ , + 156500 f; |
~13422 1)
h
) —y =— (22134 +3616235 f _, + 8648560 —362640 f , +
.}n+1 .}n 22809600 ( fn+5 fn+4 -]’n+3 n+2

2
2

h
3053035 +7633061 f,)————— (10795 1 . +345053 1, +1914300 ., +
fn+1 fn ) 5322240 ( fVH—_ .f;1+4 fn+3

3131972 f7, +2335779 f)., —168491 1)
order 2k +2 =14 (FSDSM)

h .
) — v, =—— (10485255 + 609445680 +1719564375 +1617920000
.}J'H—, J’ n 996323328 ( fr.H—G fn+5 fn+4 fn+3

379475625 £, +322599120 /. + 3222126585 £.)—— (1010975, . + 64098000 g,

498161664
+210324375 g, + 623480000 g, ., + 614964375 g, +235515600 g, , —14560225 g,)

h

— ' (1291400 . +31986624
152026875 ( S U

n+s

+198075750 £, , + 233536000 £, , +

.yn+4 - J’n n+3

h2
+49065126 ) ———— (50720
f) 30405375( Euss

20164500 g, , +42099200 g, . +38908800 g, , +14532480 g, —885268 g )

47175000 £, , + 46977600 f.

n+l

+2270592g, . +

h

——— (20942669 f,
2562560000

Vs, = 508254480 /. + 2168488125 £, + 2699264000 /.

n+3

hl
256256000
+147584025 g, +390561600 g, _, +333689625 g, +123030576 g — 7450095 ¢ )

h
- (19341201
2432430000 ( Sres

+ 688759875 f,

n+2

+ 775497456 1,

n+l

+826473395 1)~ (411921g, . +18189360 g, .

Voo =V, +466919808 f, . +1957353375 1, +1387808000 f,

+4 n+3

h* .
—457058625 f ., + 706775424 + 783720817 f ) ———— (380629 +16742592 ¢ .
Jr11+_ fn+1 frx ) 243243000 ( ng—é ng—,.

+134615475 g, +336793600 g, +337970925 g, +117681984 g, —7057013 g,)
h

% -y =
Ve = Y = 627020800 00
+3006423040 00 1., — 3804164703 75 f,., — 68951829552 f, | +1993688191 77 1)
3 h?

6227020800 0
+7151420767 5g,,., + 3348866548 8¢, — 1784098013 g, )

(4592987927 £, + 1103272704 48 f, . + 4571389983 751,

(90441763 g, _, +3963034512 g, . +3164688607 5g,., + 7793500000 0g .,
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3. ANALYSIS

Dahlquist (1963) investigated the stability problem associated with stiff eqautions, the scholar introduced the concept of
A-stability, he then outline the following definitions:

3.1 Order of accuracy and local truncation error: Following [13, 19 and 20], the local truncation error associated with
our block methods is the linear difference operator
k
Ly(x):h]= Z {ajy(x + jh)—he y'(x+ jh) —hzt,ujy”(x + jh)}
j=0 (3.1
We assume that y(x) is sufficiently differentiable and so the terms of (3.1) can be expanded in Taylor series about x to
give the expression

LI y(x):h]=c,z(x)+c hz (x)+c,h’ 2" (x) +...+ cqhgz(g) (X)+... (3.2)

where,

Jj=0
k k
“ :Zjaj _ZQ)J
J=1 J=0

1k k k
) :EZJ"“; _ngoj _ZWJ
L) = =0

k

l £ g -g-1 - -g—2
c,=—> jla. — i — J 7w ,g=34,..
‘ q!jzzl: ’ (q—l)!g ! (9—2)%‘ !

The computation above leads to definition (3.1)

Definition 3.1: A numerical method is said to be of order pifcg=cy=c2 =... =¢p
is called the error constant. The local truncation error (LTE) of the method given by

—
t ., =cpn hF Yy Py 1 o(h#H))y

n+k (33)

Following [16] and as a consequence of (3.1)-(3.3), we presents the order and error constants of the newly derived block
methods in the table 1.

Table 1: Order and error constants of the Second Derivative Simpson’s Type Block Methods

Error Constants

Method | order p=2k+2 Main Method | Additional Method(s)
SSDSM 6 ¢, =2.116x10" ¢, =1.058x107"
ESDSM ) c, =1.638x107°

8 ¢, =2.870x107

c, =1.232x107
¢, =2319x107°
¢, =2.036x107°
¢, =1.753x107°
€y =3471x107
¢, =3.204x107
¢ =3.072x107
¢, =2.804 %107
¢, =5.633x107°
6. =5329x10"°
14 ¢, =1.048x1077 ¢, =5.240x10"°
€. =5.151x107°
¢, =4.846x107*

TSDSM
10 ¢, =4.072x10°°

T*SDSM

12 €, = 6275107

FSDSM
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3.2 Stability Analysis

We consider the TSDSM as an example for computation of stability analysis, we obtained its zero stabilty and region of
absolute stabilty.

The TSDSM can be represented by a matrix finite difference equation in block form as

A{O)};z = A(I)Y,u—l + h[(p(O)EM + q)mf:;u—l] + hz[vjw)]:;: + Vj(l)Ff:—l]

(3.4
where,

Y, :(J"n+1e"m"n+4)r'Yu—1 :(J"n—sv--a}'n )T"F"ﬂ :(fn—lv"sfnn )T)Fu—l = (f:q—3!---sfn)f'
F;: :(f;l»---»f,iﬂ)r, Ff’:—l - (fn'—?r““‘fr:)r

4O 40 O W (0
A7, 47, 97 0y

(m
the matrices and ¥ are matrices of dimension 4 defined as foIIows:A(O) is

an identity matrix of dimension 4.

1 0 0 O 0 0 0 1
Lo |01 ool o (0001
0O 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
89371 103 38341 59681 0 0 1539551
272160 630 272160 4354560 4354560
6616 @ 1576 1153 0 0 0 24463
8505 315 8505 68040 68040
o _ a _
@ = =
921 81 711 411
81 0 0 0 6501
1120 70 1120 17920 17920
8192 @ 8192 3202 0 0 0 3202
8505 315 8505 8505 8505
(31207 81 1243 237 o o o 26051
90720 320 18144 725760 725760
152 2 248 43 2
—— —= - -—— 0 0 0 2l
© 567 5 2835 11340 " 11340
= . W=
279 81 183 9
- -— - - 0 0 0 —339
1120 320 1120 1792 8960
2
_s12 0 512 16 o o0 o 116
2835 2835 2835 2835

Definition 3.2 [Chu and Hamilton 1987]: A block method is Zero-stable if the roots Rj, j= 1[1]k

k

p(R)= de{Z;’l}R’“} =0, 4, =1,

‘R}.‘ <1
(R).

are of the first characteristic polynomial satisfies " one of the roots is +1,

we say this root is the principal root of p

Following definition (3.2), zero stability of the block method ( TSDSM ) is concerned with the stability of the difference
system in the limit as h tends to zero. Subsequently, equation (3.4) tends to

AT, = 4%y, 89

R).
whose first characteristics polynomial PR) given by

P(R) :det(fbi‘” —A(O)):R3(R—1) (3.6)
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P(R) R

i

Hence R =0,0,0,1. Following [13], the TSDSM is zero stable for <Lj=12,.4

R\:l

and for the root
with ‘ "the multiplicity does not exceed 1.

= 0and satisfies

Definition 3.3 [Dahlquist 1963, Fatunla 1991]: A numerical method is said to be A-stable if its region of absolute stability
contains the whole of the laft hand complex half plane Re(4h) <0

The linear stability properties of TSDSM is discussed in the spirit of [15] and determined by expressing it in the form of
(3.4) and apply the test problem

,'V'r =y, V'= ;“2.1’" . A<0

(3.7)
To yield
},fr = Q(Z)I‘,h‘—l’ z=7h (38)
where
89371 _+31207 B 81 , 103 _ 1243, 38341 _ 2237, 59681 _
272160~ 90720 ~ 3200 630" 18144 = 272160 ~ 725760 T 4354560 ©
152 , 6616 _ 2082, 248, 1576 43 5 1153
367 8505 3157 57 28357 8505 113407 68040 ~
Y, =
279 ., 921 _ 81 , 8I_ PEA S 5 9 ., 41l
11207 1120 3200 70° 1120~ 1120 17927 17920~
512, 8192 416 8192 512 173202 . e
28357 8505 315° 8505~ 2835° 8505~ 2835°
53955 2603
0 0 0 +1:>’9~ 1__+ 6051 .2
4354560 725760
24463 .
0 0 0 + 446 :+£:‘
and 68040 11340
},u—l =
3 39
0 0 0 1+ﬂ:+£:“
17920 3960
3202 116
0 0 0 l+——z+ z*
8505 2835 )
the matrix Q(2) is also given by
0(z) = (47 =z = 22y V) (4 - z0™) (3.9)
] ] £ £ E1=10.0 I . ] &,
The matrix Q(z) has eigenvalues '=1>=22">5k S — UHer=0 s \where the dominant eigenvalues 7~ is the

stability function (=) : which is a rational function with real coefficients given by
2 (2= 63(24z° +30z" +2090z° +99502° +34095z" +84000z° +142800z" +151200z + 75600)
TR 151225 3123027 +1152302° — 71932527 +176385: —49358002° + 81196002 — 9525600 = + 4762800 (3.10)

Thus, the absolute stability region of (3.10) is shown below:
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i
;
n
0
;
5
TSDSM
'muzasamw

Refz)
Fig.1: Stability Region of the TSDSM Block method.

N 0’
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05}
04t

0.2+

0+

Imi(=)

4.2

24

25

28

BTN V7 VR Y R Y TR Y TR
Re(z)
Fig.2: Stability Region of the discrete SSDSM (Main Method).

TSOSM Y

Im(z)

-1- . T*SD3M
FEOSM

| I f I I ! I [
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
Re(z)
Fig.3: Stability Region of the discrete ESDSM, TSDSM, T*SDSM and FSDSM (Main Method)
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: =503l
; —E503)
7 ro%
, RS0
o
: _2\
A
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) | | |
o I

4
Refz)
Fig.4: Stability Region of the SSDSM, ESDSM, TSDSM, T*SDSM and FSDSM (Block Method)

4. NUMERICAL EXPERIMENTS

In this section, the newly derived block methods were implemented on four stiff systems of ordinary differential equations
occurring in real life. All computations were carried out using the MatLab code in MatLab 7.5.0 (R2007b) and Maple 18.
The problems considered were in the form

yi=dv, + o). v 0)=n.i=12...n 1)
Problem 1: Consider a Linear stiff system in 3 dimensions as in (4.1) where,
-21 19 =20 1 0
A=19 -21 20 n=|0 o(x)=|0
40 -40 —40) -1 0 4.2)

with analytical solution given by
1

V== (e + '™ (cos(@0x) +sin(40x)))

v, = % (€7 — ™% (cos(d0x) + sin(40x)))
v, = —e ™ (cos(d0x) +sin(40x)))

(4.3)
Equation (4.3) was transformed into its second derivative as:
2 2 1600
V= 2 2 -1600
3200 —3200 0 (4.4)
"_ ]
Yi = V}’f

(4.6)

The SSDSM was applied to problem 4.1 where the maximum absolute errors in the interval 0 < x < 1were compared with
methods derived by other scholars (see Table 2).

Table 2: Comparison of the newly block methods with Existing Methods for problem 4.1

%10 | Sreps | SSDSM 1 Steps SDGBDF4 | EH-OK5[10] | GBDF8[6] | ATBM7[2]

h= 100 Order 6 h= 27 2100 Order 4 [25] | Order 5 Order 8 Order 7
X

n=1 0.1 9.86e-10 n=0 0.01 2.28e-17 3.21e-13 1.19e-3 3.95e-6
n=2 0.2 3.56e-15 | p=1 0.005 1.56e-16 1.01e-14 1.30e-5 29le-8
n=3 0.3 3.92e-19 | n=2 0.0025 1.02e-19 3.18e-16 1.08e-7 2.21e-10
n=4 04 5.68e-23 n=3 0.00125 6.2le-21 9.96e-18 1.08e-9 6.65¢e-13
n=> 0.5 1.04e-26 | p=4 0.000625| 9.45e-23 3.11e-19 9.4le-12 2.69e-15
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AN == y1 SSDSIH
S y2 SSDSH
" —+—y3 SSDSM
5 \, ==yl Ode Solver
' ..:'-"'-r.'"'----n--... """ y2 Ode Solver

g R

o ——y3 0de Solver

0

==yl System of Equs.
""" y2 System of Eqns.
Maad 33 32 on ou o on an il e 2l e o +y3 system of EqﬂS

Function axis

0l 06 (! 1] 03
Rl axis
Fig. 5: Graphical Solution of problem 1 with SSDSM, h = 0.01

Problem 2: We consider another stiff initial value problem in the form (4.1) given by

0.1 -04 0 0 0
A= 0 =50 0 | n=|1 o(x)=|0
o 70 -120) \1) 0

(4.6)
we solve the problem at x = 2 with h = 0.001 . Transforming (4.6) into second derivative resulted to:
0.01 20.04 0
V= 0 -2500 0
0 11900 14400

(4.7)
~o-y1 B8N
12 SIS
o e, 13 E5I8H
5 05~ —+y1 [de Soher
2 Ode Sover
ST —e 13 b S
T .
B D=0 -b 6590000t
R
&
05-

| I I [ | [ { [
0 000 o il 0 005 0 1%

Real axis
Fig. 6: Graphical Solution of problem 2 with ESDSM, h = 0.001

Problem 3: A numerical example solved by [21]. _ B
yvi=—ayv, —pyv, +(a+ f—1De”

Vi =Py —oy, —(x— fF—De ™

Vol. 7 No. 9 (2020)

11



Journal of Advance Research in Mathematics and Statistics (ISSN: 2208-2409)

with initial value y(0) = (1,1)7 . In order to make this system homogeneous, we introduce an additional variable
V3 = L 1:(0) = 0. the gigenvalues of the Jacobian associated with the resulting system are = ¢ * 75 0- this problem has

theoretical solution as *1(*) =Y2(¥) =€ Raults are obtained when & =1 £ =30
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Fig. 7: Graphical Solution of problem 4.3 with TSDSM, h =0.01

4 and the value of h chosen was 0.09

Problem 4: To test the efficiency of the proposed algorithm we used the following stiff initial value problem arising from

the biochemistry see [23].

dy 1 ) )
@ _1 (7 (D) + 3, (D) = 3Dy, (1) — qyy (1)),
dt o

dv, (t
}027:{) = 2my,(6) — 3, (1) — 3, ()3, (1),

dv
iﬁﬁziuuﬂ—nu»}um:anm:bJﬂm:d

Here #>">4 and r are some parameters, a,b and d are the initial values. For some values of parameters this model has

a periodic solution very sensitive for the parameter values.

problem was solved on the interval [0, 30]. Problem 4 was extracted from the work of [22].
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Fig. 8: Graphical Solution of problem 4.4 with FSDSM, h = 0.0
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Let the parameter values be as follows:
o :=0.1: g = 0.01; m:=0.5; r:=1 and the initial conditions are a =0, b = 0.5 and d = 0.8. The test
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5. DISCUSSION OF RESULTS

In this paper, we described the construction of a class of Second Derivative Simpson’s type Block Methods (SDSM) of
order 6, 8, 10, 12 and 14. These block methods were all found to be A-stable with order p = 2k + 2 for step numbers k =
2(3)6 which are appropriate for the numerical solution of system of stiff differential equations (Fig. 4). The discrete forms
of the methods were found to have small absolute stability regions for the step numbers under consideration (Fig.2 and
Fig. 3). The numerical results obtained were generated using codes written in MATLAB 7.5.0 (R2007b) and Maple
18. It is worth noting that the newly derived block methods approximated well with the Ode Solver (Ode 23s) (Fig. 5, 6
7 and 8) for the step numbers k = 2(3)6 . Example, in Fig. 6, both the Ode Solver and ESDSM overlapped at y1, y2 and
y3. Comparison of the new block methods with existing methods showed that the new methods perform much better in
terms of accuracy. For instance, SSDSM of order 6 performs better in accuracy when compared with ATBM and GBDF8
of order 7 and 8 respectively (Table 2).

6. CONCLUSION

The Second Derivative Simpson’s Type Block Methods (SDSM) was introduced in section (2). The newly developed
class of methods was found to be all A-stable for values of k = 2(3)6 with uniform order p = 2k + 2 (see Table 1) in
section (3). They also possessed good stability regions suitable for the solution of stiff system of ODEs. Application of
these methods to real life problems was carried out in section (4) and indicated that they were both accurate and very
efficient, as a result of this therefore; the authors were of the opinion that they be employed for the solution of large stiff
systems and possibly for solution of PDEs through the method of lines (MOL).

Appendix

SSDSM : Sixth order Second Derivative Simpson' s Type Block Method ESDSM : Eighth order Second Derivative
Simpson' s Type Block Method TSDSM : Tenth order Second Derivative Simpson' s Type Block Method

T "SDSM : Twelfth order Second Derivative Simpson's Type Block Method

FSDSM : Fourteenth order Second Derivative Simpson' s Type Block Method
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