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Abstract: -

In the present work, it is obtained a class of hypersurfaces, of decomposable type, for which the curvature tensor associated
to the affine normal connection, and the Levi-Civita covariant derivative of the difference tensor, are scalar multiples each
other.
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1. INTRODUCTION

Let M be an n-dimensional €~ manifold, and F : M — R™" an immersion of class ¢~ .

Consider the affine space R™! with its usual flat connection D and a volume form - @

If we denote S the affine normal field and Y the induced connection ( called normal comedion)and S is the affine shape

operator, we have the formula of Gauss
DxY=VyY+h(XY) 11

and the formula of Weingarten
Dy& = =SX 12

The curvature tensor field R, which is of type (1, 3)is defined by

RX.Y)Z = ViNyZ -V NyZ ~VixnZ 13

and the torsion tensor field T is defined by

T(X.Y) = Vy¥ = VX — [X. 1] 14

If we denote V' the Levi-Civita connection for h, we can consider the difference tensor field K, which is of type (1,2), given
by the diference between the normal and Levi-Civita connections, that is

K(X.Y) = VY -V,¥

Becauseof V and V theyare bothtorsion-free, we have KX, T) = K(T.X), ,and usually we write Kx = Vx — V.
The covariant differentiation of K, with respect to Levi - Civita connection gives a tensor field

v K, wuich is of (1, 3) type, and we ask ourselves if it feasible to have the equation V K = 4 Rfulfilled (where A isa
scalar, possibily dependent on the dimension of M) for some hypersurfaces dlecomposable type.

2. Geomety of affine immersions
o Y 1 . . . o0
Let M be an n -dimensional manifold of class €~ and let £ : M — R™ be an affine immersion of class C .

If S denotes the affine normal field and (V, h, S) is the Blaschke structure on the hypersurface M, we have the
fundamental equations

RX.Y)Z = h(Y.Z)SX - h(X.Z)SY Gauss equation 2.1
(Vxh)(Y.Z) = (Vvh)(X.Z) Codazzi equation for / 2.2
(VxS)Y = (VpS)X Codazzi equation for § 2.3
h(SX,Y) = h(X.ST) Ricci equation 24

2.5 Definition. The Ricci tensor field Ric, which is of (0, 2) type , is given by
Ric(X,Y) = trace{Z - R(Z,X)Y}

2.6 Proposition. The Riccitensor isgivenby Ric(X.T) = Tr($)h(Y.Z) - h(SY.Z) and Ric=0 if, and only if S=0.
Proof. [1]. Proposition 3.4, page 42.
Now, we define two more tensors, from V', V, and K.

LX.Y) = trace{Z - (%'zl&) (X, Y)}

2.7
and the analogous for the normal connection v
L(X.Y) = trace{Z - (VZK)(X. 1)} 28
2.9. Proposition.
LXY) = %Tr(S)h(X, Y) - %h(SX, Y) 2.10
L(X.Y) - L(X.Y) = 2Tr(KxKy) 2.11

Proof. [1]. Propositions 9.4 y 9.9, pages 79 y 82 respectively.
From 2.10 we see immedialy that a hypersurface is an affine hypersphere (S'=pul) if,and only if L = 0.
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2.12.Proposition. If VK= A R, then L= 0, that iis, the hypersurface is anaffine hypersphere.
(%”ZK) (X1 = ARXD)Z,

Iy = trace{z - (’V'ZK) (X, }‘j}
= trace{Z - AR(X.})Z}
= trace{Z — An(Y.Z)SX — Ah(X.Z)SY}
= Jh(Y.SX) — Ah(X.SY)
=0

Proof. VK= A R implies

by using (2.1) and (2.4).

2.13.Corollary. If VK= A R, then L(X, Y) = -2Tr(KxKy ).
Proof. Is immediate, for (2.11).

3. Hypersurfaces Of Decomposable Type
We now add the hypothesis that the hypersurface can be expressed with respect to a suitable affine coordinate system by

F(rl_.,...,rn) = (rl,...,r}g,ﬂrl,...,r}q))

with (t1, . . ., tn ) varying in an open connected subset of R" and f can be decomposed into a sum of
n terms, each of them depending on only one of the independent variables ti, ..., t,, i.e.

ﬂfl_.,...,f;-f) =fl(fl)+ﬁ(f2)+' . ‘+”(f”)

The tensor field h of unimodular affine geometry, in terms of the graph function f, is
h="Y " hydt; ® di;
b 3.1

hy = 6507

Where

and
1

) - (1:[1&0

Nk
If (hl) denotes the inverse matrix of (h;)) the Christoffel symbols réf of Levi-Civita connection are given by

~l
FU =L Zh’“”{@;hmj + Gj'hfm - amhij)

5
m (3.2)
from which
’fi = &f;_ 33
T 2n+2) f)
= o
I; 2(”+2)‘f} U;r): i +] 3.4
i -1 S,
= LI 3.
Ly=sym 1*/ 3
~k
I'y=0 i+tj+k+i 3.6
Nk
T

It can be seen, [2], that the Christoffel symbols = 7 of normal connection are given by

TE = hy Y W5, log(¢)
m 37

from which
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. 1 f;H
i = EA 3.
Ti=—5 7 3.8
, A
;= 3.9
n+2f (f )- e
l"‘g =0 otherwise 3.10

i
With the Christoffel symbols of both connections, we calculate the coefficients &ﬂf of the tensor difference K

- _l=n fi'

Ki=_l=n Ji 3.11
Yo 2n+2) A

S R

le —2(n+2) fj, i+]J 3.12

i 1 s o

K} 7(”+2)f(f') i+ 3.13
K}k =0 otherwise 3.14

The coefficients Sj are given by

s = ¢ ff} ; 3.16
m+2)" (f)f
rr 2 4y
gk = m._. R ﬂ—
Where (&) and (i)

The derivatives S and i satisfies the following relations [3]
g;c = L(Ehk—flgk) 3.17

T
= L (£ _orfh, 3.18
o )

Using (3.15), (3.16) and the Gauss equation (2.19), we compute the component Rj, of the tensor R as

4. Covariant Differentiation of the Difference Tensor Multiple of Curvature Tensor.
K? = AR!

This multiplicity is given by VK = AR, that in coordinates is equivalent to K where

Kkl are given by

. . ~l
i _ oA i
Kﬂc,l = Gif&jk"' E ,rfm E ,1_5? mk 2 ,l—fk jm
m

the components

4.1

We establish the following convention for the indices: for different symbols, correspond different values too, and they range
from 1 to n. Hence, the equations that we consider are:

ﬁ[(%n +5)g; —2(n +2)h;] ng = 42
A =0 4.3

2(n+2)h ~ Bn+5)g +(n+1)g — D gn =0 4.4
(mn—1)g:+2(n+2)h;—(3n+5)g + ng = A[4(n+2)h; —4(2n +3)g;] 4.5

mei

Remark: There are more equations, but they are omitted since they are redundant.
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From (4.3) we see that at least n-1 functions must be of parabolic type. Denoting fkq the remaining one and assuming that

iy # 0. Makingi =ko in4.2), 4.4) and (4.5) we have
201+ 2, — (31 +5)gi, =0 4.6

(m—1)gw, = 4A[(n +2)hy, —4(2n +3) gy, |

and reordering
(Bn+35)gk, —2(n+2)h, =0 4.7

(n—1+ 124 +8An)gy, —4A(n +2)hy, = 0

and since €% * O it must hold

3n+5 2(n+2)
det =0
n—1+124A+8in —4i(n+2)

4.8
— 1-n
that is, 2 +2)(2A(n + 1) +n = 1) = 0. from which 2(n+1) and replacing in (4.7) we have
Bn+5)gk, —2(n+2)hy, =0
Hence,
_ 3n+5
Mty = 3002y 8k
or equivalently
£ 2
W _ ( 3n+5 ) k)
1 32 9] I3
U(;cg) 2n+2) (fko)
which solution, normalizing constants, is
ﬁfo(rko)=fkon_ ) tk, > 0 49

Of course, the n functions there can not be of parabolic type, since in this case, the tensors K and R vanish.
We resume all this in the following theorem:

4.9 Theorem. Let M be a hypersurface of decomposable type with parametrization given by
(Ils---afn) - (rl.s---efmfl(rl) i v )J‘(IM))

— 1—n

~ ! , 1
Then, the condition VK = AR hold, if 2(n+1) of functions f are of parabolic type and the remaining one is

[ — 1.

given by
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