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Abstract: - 
This paper examined the modeling of accident cases in four major roads leading to the main city of Enugu State of Nigeria 

using SARIMA Models. Among the most robust approaches for analysing time series data is the Autoregressive Integrated 

Moving Average (ARIMA) model propounded by Box and Jenkins (1979). In this paper, we employed the Box-Jenkins 

methodology to build SARIMA model for the accident cases for the period, January 2007 to December 2015 with a total 

of 108 data points. The model obtained in this paper was used to forecast monthly cases of accident in each of the roads 

for the upcoming year 2016. The forecasted results will help Government and Federal road safety commission to see how 

to maintain orderliness on the roads to reduce the case of road traffic crashes along the roads 
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1.1 BACKGROUND OF STUDY 

Before the advent of modern transportation system, Human beings and goods (wares) moved from one place to another 

either by trekking or by the use of animals like donkeys, camels and horses. Today, technology has birthed faster means 

of transportation from one place to another. It has been posited that a good means of transportation serves as a lifeline of 

an economy (Olubomehin, 2012). Indeed, the provision of a high-quality transport system has been identified as a pre-

condition for the full participation of remote communities in the benefit of natural development. Among the various means 

of transportation known to man, road transportation is the most common and the most important since it is relatively more 

affordable and accessible by people. Thus, it is exposed to more mishaps than other means of transportation. Road traffic 

crashes (RTC) has been noted to be the leading cause of death in adolescents and adults worldwide. Currently, it ranked 

9thposition in order of disease burden and are projected to be ranked 3rd in the year 2020 (Atubi, 2012). Avuglah et al, 

(2014) in their Research have indicated that about 50 million people are injured and 1.2 million people are killed each 

year in road accident worldwide. Traffic crashes and injuries have incurred an annual loss of $65 billion to $100 billion 

(Agbeboh and Osabuohien, 2013). In Nigeria, it has been estimated that persons injured in accidents on the highways and 

streets no longer participate in the economic mainstream and this amounts to a loss of labour of millions of persons in the 

nation (Pratte, 1998). 

Accident is an event, occurring suddenly, unexpectedly and inadvertently under unforeseen circumstances. Road traffic 

crash/accident can be said to be an unplanned occurrence of auto crash that may result in injuries, loss of lives and 

properties. It claims the largest toll of human life and tends to be the most serious problem all over the world. Although 

transportation has liberated man and makes him more mobile, yet his increasing reliance on vehicular movement has 

conferred great fatalities on him and his activities (Sumaila, 2013). 

Ironically, in Nigeria, studies have indicated that better facilities in terms of good quality and standardized roads have 

been accompanied by increasing number of accidents (Atubi and onakala 2009). This is totally contrary to the trends in 

countries where even the level of sophisticated road network and volume of vehicular traffic are much higher. In an effort 

to check this alarming trend, the Nigerian Federal government saw the need to establish the present federal Road Safety 

Commission in 1988 to address the road safety carnage on the high way. This commission has helped through their 

operations in minimizing Road traffic crash but has not succeeded in eradicating it entirely. 

 

The cases of accident being a timely occurrence can be modeled using Box and Jenkins approach to time series modeling 

developed by two mathematicians, George Box and Gwilym Jenkins (1970). 

The approach tries to identify the appropriate other of a linear model by examining the correlogram of the series. It is a 

mathematical model designed to forecast data within a time series. The Box- Jenkins model alters the time series to make 

it stationary by using the differences between data points. This allows the model to pick out trends, typically using 

autoregression, moving averages and seasonal differencing in the calculations. Autoregressive integrated moving average 

(ARIMA) model is a form of Box-Jenkins model. Our interest in this study therefore, is to identify a model from ARIMA 

family that understudies the generative pattern of the cases of accident in each of the routes (Enugu-Abakilike, Nsukka-

9th mile, Enugu-Onitsha, Enugu-Porthacourt) and use the model for prediction into the future. When seasonality is 

contained in the series, the seasonal components are incorporated into the ARIMA model to make the seasonality not to 

die out. This leads to an extended model known as seasonal autoregressive moving average (SARIMA) model. 

Many literatures abound in the area of road traffic crash cases in Nigeria and beyond. Some of the studies (Atubi (2013), 

Oppong (2012), Olushina et al (2011) and olujimi (2016)) concentrated on the fatality (death) caused by road traffic 

crashes while others (Salako et al (2014), Iwok (2016), Sumaila (2013) etc) tries to fit a model that could be used to make 

prediction (forecast) into the future of accident cases. It has been identified that some variables could trigger crashes on 

the road. This was buttressed in the work of Atubi (2012), where he regressed road traffic crash on the length of roads, 

presence of road safety and population. It was found that the effects of these selected independent variables are quite 

significant. The presence of seasonal effects cannot be ignored in time series modeling of accident cases as seen in the 

work of Katleho (2016). However, Agbeboh and Osabuohien (2013) fitted only the linear equation with the claim that no 

seasonal component was detected in the cases of accident in Kogi State Nigeria. 

 

Materials and methods 

As pointed out earlier, the time series modeling approach, Autoregressive Integrated Moving Average (ARIMA) models 

propounded by Box and Jenkins (1970) was adopted in this work. The methodology is a modeling technique that expresses 

a series as a function of an Autoregressive (AR) process, where there is a memory of past values and a Moving Average 

(MA) process, which accounts for previous error terms, inculcating an Integrated (I) process so as to stabilize the data. 

 

ARIMA (Autoregressive Integrated Moving Average) Models 

This is a statistical analysis model that uses time series data to predict future trends. This model type is generally referred 

to as ARIMA (p, d, q), with the integers referring to the autoregressive, integrated and moving average parts of the data 

set, respectively. The values of p and q are the number of autoregressive (AR) and moving average (MA) components in 

ARIMA (p, d, q) model.These two simple components are used in representing the behavior of observed time series 

process. The AR is used to describe a time series in which the current observation depends on its preceding values, where 

as the moving average (MA) is used to describe a time series process as a linear function of current and previous random 

errors. It is possible that a time series model will consist of a mixture of AR and MA components. In this case the series 

is said to be an autoregressive moving average process of order (p, q), where p and q are the orders of the AR and MA 

components respectively. The selection strategy for such models was developed and selected by the Box-Jenkins method. 
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ARIMA Model consists of a three stage iterative process, which comprises of identification of the model, parameter 

estimation and diagnostic checking of residuals of the fitted model. Tentative identification of ARIMA process is done 

through analysis of actual historical data. In general, we should have atleast 50 observations available to identify the 

appropriate model satisfactorily. Tentative identification is usually done by observing the behavior of the theoretical 

autocorrelation and partial autocorrelation functions. Model estimation means finding the values of the model coefficients 

which provide the best fit to the data. Let the time series under consideration be Zt.If d is a non-negative integer, then the 

{Zt} is said to be an ARIMA (p, d, q) process if 𝑌𝑡 = 

∇𝑑𝑧𝑡 is a causal autoregressive moving average (ARMA) process. Ztsatisfies a difference equation of  the  form:𝜙∗(𝐵)𝑍𝑡 ≡ 

𝜙(𝐵)∇𝑑𝑍𝑡 = 𝜃(𝐵)𝜀𝑡.  Where  B  is  the  backward  shift  operator,∇= 1 − 𝐵 , BmZt =Zt-m, {𝜀𝑡}~𝑁(0, 𝜎2), 𝜙(𝐵)𝑎𝑛𝑑 𝜃(𝐵) are polynomials of 

degree p and q respectively, 𝜙(𝐵) ≠ 0 𝑓𝑜𝑟 |𝐵| ≤ 1.  the   polynomial 𝜙∗(𝐵) has a zero of order d at B = 1. The process {Zt} is said 

to be stationary if d =0, in which case the ARIMA (p, d, q) reduces to an ARMA (p, q). The ARIMA model is a very 

useful statistical method for analyzing data with a correlation among neighbouring observations. 

 

SARIMA (Seasonal Autoregressive Integrated Moving Average) Models 

This is an extension of ARIMA models. Seasonal ARIMA (p, d, q) is used when seasonal (hence non stationary) behavior 

is present in the time series. The Seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a 

multiplicative model with the form SARIMA (p,d,q)(P,D,Q)S, where: 

• p, d, q are the parameters in non-seasonal ARIMA model. 

• P is the number of seasonal Autoregressive order, 

• D is the number of seasonal differencing, 

• Q is the number of seasonal Moving Average order, and 

• S is the time span of repeating seasonal pattern. 

 

In a mathematical expression, the SARIMA model can be presented as ∅𝑝(𝐵)∅𝑃(𝐵𝑆)∇𝑑∇𝐷𝑍𝑡 = 𝜃𝑞 (𝐵)𝜃𝑄 (𝐵 𝑆 )𝑎𝑡 .  ∅𝑝 (𝐵) is the transfer 

function for the non-seasonal autoregressive factor, ∅𝑃 (𝐵 𝑆 ) is the transfer function for the seasonal autoregressive factor, 

∇𝑑 is the non-seasonal differencing of the series of order, d, ∇𝐷 is the seasonal differencing of the series of order, D, 𝑍𝑡 is 

the time series observations, 𝜃𝑞(𝐵) is the transfer function for the non-seasonal moving average factor, 𝜃𝑄(𝐵𝑆) is the transfer 

function for the seasonal moving average factor and 𝑎𝑡 is the error at time, t. The ability to   model  complex   seasonal   

time  series  greatly  increases  the  applicability  and   usefulness of autoregressive integrated moving average (ARIMA) 

model building proposed by Box and Jenkins (1970). Many time series such as climate, economic, accident etc. are 

observed to exhibit some periodic and recurrent nature. In such cases, the popular ARIMA models cannot provide good 

approximations for the true underlying process. Hence the need for a component in ARIMA model that caters for the 

periodic influences called seasonal ARIMA (SARIMA) model. However, in practice, it may not be reasonable to assume 

that the seasonality component repeats itself precisely in the same way cycle after cycle (Brockwell, 1986). Seasonal 

ARIMA models do allows for randomness in the seasonal pattern from one cycle to the next. In general, we say a series 

exhibits periodic behavior with period S, when similarities in the series occur after S basic intervals. 

 

Data analysis and results 

The data used in this research work is the monthly road traffic crashes sourced from the Federal Road Safety Commission 

Enugu State Nigeria. The data set contains a time series length of 108 starting from year 2007 to year 2015. 

 

Distribution of Road Traffic Crash along the Study Routes 

The FRSC record showed that 2,959 Road Traffic crash (RTC) cases were reported with 629,697,983 and 650 crashes 

along ENU-ABK, NSK-9th Mile, ENU-ONT and ENU-PH roads respectively. The following table shows the distribution 

of Road Traffic Crash along the Routes. 

 

Table 1: The distribution of road traffic crash along the selected routes 

 YEAR NO RTC ENU-ABK % NSK-9th Mi % ENU-ONT % ENU-PH %  

  

2007 

 

683 

 

138 

 

20.2 

 

163 

 

23.9 

 

220 

 

32.2 

 

162 

 

23.70 

 

 2008 592 151 25.5 142 24.00 164 27.7 135 22.80  

 2009 139 20 14.4 29 20.9 60 43.2 30 21.58  

 2010 190 28 14.7 50 26.3 74 38.9 38 20.00  

 2011 262 52 19.8 53 20.2 89 34.0 68 25.95  

 2012 288 81 28.1 68 23.6 84 29.2 55 19.10  

 2013 301 73 24.2 66 21.9 103 34.2 59 19.60  

 2014 265 45 17.0 68 25.7 104 39.2 48 18.11  

 2015 239 41 17.2 58 24.3 85 35.4 55 23.10  
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Fig 3:Multiple bar charts showing the distributions of road traffic crash along the routes 

 

  
 

Table 2: The descriptive statistics of the selected routes 

 Variables Mean Standard 

deviation 

Variance Minimum Maximum Skewness Kurtosis 

 ENU-ABK 5.84 4.973 24.726 0 25 1.542 2.698 

NSK-

9THMILE 

6.45 4.699 22.082 0 27 1.679 3.641 

ENU-ONIT 9.10 5.508 30.335 2 30 1.790 3.600 

ENU-PHC 5.82 4.271 18.240 0 22 1.66 2.95 

 

Considering the mean number of accident cases in each of the routes, it is obvious that accident occur more in ENUGU-

ONITSHA road than the other three routes (ENU-ABK, NSK-9THMILE and ENU-PHC). The number of accident cases 

in a month within the period under study fluctuates between 0 and 25, 0 and 27, 2 and 30, and0 and 22 for ENU-ABK, 

NSK-9THMILE, ENU- ONITSHA and ENU-PHC routes respectively. The rate of variability in the monthly number of 

accident cases in ENUGU-ONITSHA route is explosive as it has the highest variance (30.335). The skewness taking a 

positive value for each of the routes indicates that more of the number of accident cases in a month cluster to the left of 

their means (5.84, 6.45, 9.10 and 5.82). On the other hand, the kurtosis values indicate that the distribution of each of the 

routes is normal (since the kurtosis values are each greater than or equal to 3 by approximation). 

 

3.3 Test for Stationarity 

Our interest here is to carry out a test to determine whether the series are really stationary or not. The Augmented Dickey 

Fuller test (ADF) for unit root was conducted to determine the order of differencing that will make the series stationary. 

To illustrate this, consider an autoregressive model of order 1 without constant given as 

𝑧𝑡 = ∅𝑧𝑡−1 + 𝑒𝑡, 
𝑒𝑡~𝑁(0, 𝜎2 ). 

We try to test the null hypothesis 
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H0 ∶  ∅ = 1(unit root exist, the series is non − stationary)   against  the  alternative  𝐻1 ∶  |∅| < 1 

(Unit root does not exist, the series is stationary) 

The null hypothesis has the implication that the series are not stationary but can be made stationary by differencing the 

series at order 1, while the alternative asserts that the series are already stationary. Using the augmented dickey-fuller test, 

we consider the test-statistic given as 

 

is the model parameter and 𝑆𝐸 (∅̂)is the standard error of the parameter. 

From the test carried out, each of the series was made stationary at the first differencing. The result of the test for unit 

root is tabulated below: 

 

Table 3: The result of the augmented Dickey-Fuller test 

ENU-ABK 

 ORIGINAL SERIES DIFFERENCED 

SERIESATORDER 1 

ADF -2.7009 -5.7953 

P-VALUE 0.2859 0.01 

NSK-9THMILE 

ADF -2.5436 -5.2991 

P-VALUE 0.3512 0.01 

ENU-ONITSHA 

ADF -3.0543 -7.1643 

P-VALUE 0.1393 0.01 

ENU-PHC 

ADF -2.9827 -6.2256 

P-VALUE 0.1690 0.01 

 

From the table 3 above, each of the original series is not stationary. This can be seen from the P- value of the test for the 

original series which are so big that the null hypothesis cannot be rejected. However, the P-values of the test for 

stationarity of the series differenced at order 1are very small, indicating that each of the series at difference of order 1 is 

stationary. 

 

Decomposition of the Observed Series 

Now, we want to break down the series into components: trend, seasonal and random effects, using additive model. 

Prajakta (2014) asserts that in the plots of the series, the distinguishing characteristic between these two types of time 

series models (additive and multiplicative) is that in the additive case, the series shows steady seasonal fluctuations, 

regardless of the overall level of the series; where as in the multiplicative case, the size of the seasonal fluctuations vary, 

depending on the overall level of the series. In addition to this observation, the seasonal components after decomposition 

of the series take regular pattern in additive case but irregular fluctuation in multiplicative case. Therefore, the regular 

pattern of the seasonal effects as depicted in the decomposition graph informed the use of additive model, 𝑍𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐸𝑡 
to describe the series with the seasonality index tabulated below. 

 

Table 5: The computational results of seasonality index along the routes 
Period Jan. Feb. March Apr May June Jul Aug Sept. Oct. Nov. Dec. 

 

Enu-Abk         0.139 

 

-1.653 

 

-0.465 

 

0.264 

 

0.306 

 

-1.736 

 

-1.049 

 

0.514 

 

0.951 

 

-0.861 

 

-0.424 

 

4.014 
Nsk-9thmi        1.516 -1.984 -0.984 -0.296 -0.401 -2.922 0.328 -0.526 0.203 0.391 0.557 4.119 

Enu-Onit         0.414 -1.043 0.123 1.186 -0.731 -1.543 -1.898 -0.085 0.332 -1.668 2.102 2.811 

Enu-Ph 0.359 -0.767 -0.182 0.484 -0.182 -1.245 -0.017 -0.620 0.526 -0.724 0.234 2.130 
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Figure 8: Decomposition of the observed series using additive model 
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From the decomposition plots, it is clear that each of the series has pronounced seasonal effect. In addition to the 

information revealed by the plots, it is clearly believed that the rate of road traffic crashes is related in months year to 

year. It is always very high within festive periods between the month of March and May (Easter period) and November 

and December (Christmas period), and relatively low in other months over all the years considered. The repeating pattern 

in the series indicates the presence of seasonal effects and calls for seasonal differencing (that is differencing at order 12) 

before a SARIMA model is fitted to each of the route. The essence of the seasonal differencing is to retain the seasonal 

pattern in the long run forecast. 

 

3.5 Seasonal Differencing of Each of the Series 

Consider a series with seasonal component 𝑆. Before an appropriate SARIMA model can be fitted on the series, it is 

imperative to do seasonal differencing on the series. That is differencing at seasonal lags 12, 24, 36, etc. With a seasonal 

time series, it can be made stationary by seasonal differencing which is defined as a difference between an observation 

and observation with lag that is a multiple of 𝑆. For instance, a first order seasonal difference is the difference between 

an observation and the corresponding observation from the previous year. That is 𝑧 ′=𝑧𝑡 − 𝑧𝑡−𝑚.where 

𝑧′
t is the seasonally differenced series. For the sake of parsimony, seasonal differencing ought not to exceed that of order 

two. 

FOR ENU-ABK 

Figure 9: The correlogram plot of the seasonally differenced series along ENU-ABK route 

 
 

 
 

In the plots of the seasonally differenced series (after the first differencing of the series along ENU- ABK route to make 

the original series stationary), there is a spike in the ACF at lag 12, but nothing at seasonal lags in the PACF. This is 

suggestive of a seasonal MA (1) term. In the non-seasonal lags, there are three significant cut-off in the PACF and one 

significant cut-off in the ACF, suggesting a possible AR (3) term and MA (1) term in the non-seasonal component of the 

SARIMA model. Consequently, this initial indication suggests that a possible model for these data is an ARIMA 

(3,1,1)(0,1,1)12. For the sake of parsimony, we refuse to tolerate AR (3) component in the model and consider ARIMA 

(2,1,1)(0,1,1)12. We therefore fit this model, along with some alterations within the neighborhood, and take note of their 

information criteria which are shown in the following table: 

 

Table 6: Information criteria for the SARIMA model alongENU-ABK 
SARIMA AIC AICC BIC 

(2,1,1)(0,1,1) 559.56 560.24 572.33 

(1,1,1)(0,1,1) 557.62 558.06 567.83 

(1,1,0)(0,1,1) 565.79 566.05 573.45 

(2,1,0)(0,1,1) 561.64 562.08 571.85 

(1,1,2)(0,1,1) 558.70 559.38 571.47 

(2,1,1)(0,1,2) 560.00 560.95 575.32 

(1,1,1)(0,1,2) 558.06 558.73 570.82 

(1,1,0)(0,1,2) 565.34 565.78 575.55 

(2,1,0)(0,1,2) 561.74 562.42 574.51 

(1,1,2)(0,1,2) 559.08 560.03 574.40 

(2,1,1)(1,1,1) 560.23 561.18 575.55 

(1,1,1)(1,1,1) 558.29 558.96 571.06 

(1,1,0)(1,1,1) 565.71 566.16 575.93 

(2,1,0)(1,1,1) 562.09 562.76 574.86 

(1,1,2)(1,1,1) 559.24 560.20 574.56 
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Among all the SARIMA models considered for ENU-ABK route, SARIMA (1,1,1)(0,1,1) was chosen as the best as it has 

the minimum information criteria considered. The parameters of the model are presented in the table below. 

 

Table 7: The parameter estimate of SARIMA (1,1,1)(0,1,1) 

parameters ∅1 𝜃1 𝜃𝑠 ; 𝑠 = 1 

Value -0.2819 -0.5554 -0.9999 

 

FOR NSK-9th MILE 

Figure 10: The correlogram of the seasonally differenced series for NSK-9th MILE 

 
 

Similarly, in the plots of the seasonally differenced data (after the first differencing of the NSK-9TH MILE route to make 

the original series stationary), there are significant spikes in the ACF and  PACF respectively at lag 12 (seasonal lag). 

These suggest a seasonal AR (1) term and MA (1) term. In the non-seasonal lags, there are three significant cut-off in the 

PACF and one significant cut-off  in the ACF suggesting a possible AR (3) term and MA (1) term in the non-seasonal 

component. These suggestions gave a possible model for the series as ARIMA (3,1,1)(1,1,1)12. For the sake of parsimony 

also, we refuse to tolerate AR (3) component in the model and consider ARIMA (2,1,1)(1,1,1)12. We therefore fit this 

model, along with some alterations within the neighborhood, and take note of their information criteria which are shown 

in the following table 

 

Table 8: Information criteria for the SARIMA model alongNSK-9th Mile 

SARIMA AIC AICC BIC 

(2,1,1)(1,1,1) 536.92 537.59 551.91 

(2,1,0)(1,1,1) 537.20 537.87 549.97 

(2,1,2)(1,1,1) 538.57 539.86 556.45 

(1,1,1)(1,1,1) 534.62 535.29 547.39 

(0,1,1)(1,1,1) 533.14 533.59 543.36 

(0,1,2)(1,1,1) 534.62 535.29 547.39 

(0,1,0)(1,1,1) 576.51 576.78 584.17 

(2,1,1)(1,1,0) 536.52 537.19 549.29 

(2,1,1)(1,1,2) 538.48 539.77 556.36 

(2,1,1)(0,1,1) 537.92 538.59 550.69 

(2,1,1)(2,1,1) 538.52 539.81 556.40 

(1,1,1)(0,1,1) 535.93 536.37 546.14 

(0,1,2)(0,1,2) 535.18 535.85 547.95 

(1,1,1)(0,1,2) 535.17 535.85 547.94 

(2,1,1)(0,1,0) 575.29 575.74 585.51 

(2,1,0)(0,1,0) 578.07 578.33 585.73 

 

From the above table, SARIMA (0,1,1)(1,1,1) is the best model forNSK-9TH MILE route with the following parameters 
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Table 9: The parameter estimate of SARIMA (0,1,1)(1,1,1) 

parameters 𝜃1 𝜙𝑠 ; 𝑠 = 1 𝜃𝑠 ; 𝑠 = 1 

value -0.7423 -0.3734 -0.3785 

 

FOR ENU-ONT 

Figure 11: The correlogram of the seasonally differenced series for ENU-ONT route 

 
In the plots of the seasonally differenced data (after the first differencing of the ENU-ONITSHA route to make the original 

series stationary), there is a significant spike in the ACF at lag 12, but nothing at seasonal lags in the PACF. This suggests 

a seasonal MA (1) term. In the non-seasonal lags, there is one significant cut-off each in the ACF and PACF suggesting 

a possible AR (1) and MA (1) terms. Consequently, this initial analysis suggests that a possible model for this series 

(ENU-ONITSHA route) is an ARIMA (1,1,1)(0,1,2)12. We fit this model, along with some variations within the 

neighborhood, and take note of their information criteria which are shown in the following table: 

 

Table 10Information criteria for the SARIMA model along(ENU-ONITSHA) 

 SARIMA AIC AICC BIC 

 

(1,1,1)(0,1,2) 

 

558.68 

 

559.35 

 

571.45 

 (1,1,0)(0,1,2) 577.22 577.66 587.43 

(1,1,2)(0,1,2) 560.29 561.24 575.61 

(0,1,1)(0,1,2) 556.76 557.20 566.97 

(1,1,1)(0,1,2) 558.68 559.35 571.45 

(2,1,1)(0,1,2) 560.57 561.52 575.89 

(1,1,1)(0,1,1) 556.95 557.40 567.17 

(1,1,1)(0,1,2) 558.68 559.35 571.45 

(1,1,1)(0,1,0) 566.92 567.18 574.58 

 

The model with minimum information criteria is SARIMA (0,1,1)(0,1,2), therefore, it is taken to be the best model for 

ENU-ONITSHA route. The parameters of the model are in the table below 

 

Table 11: The parameter estimate of SARIMA (0,1,1)(0,1,2) 

parameters 𝜃1 𝜃𝑠 ; 𝑠 = 1 𝜃𝑠 ; 𝑠 = 2 

value -0.7939 -0.4692 -0.0727 
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FOR ENU-PH 

Figure 12: The correlogram of the seasonally differenced series for ENU-PH route 

ENU-PORTHARCOURT 

 
 

Also, in the plots of seasonally differenced data (after the first differencing of the ENU-PH route to make the original 

series stationary), there is a significant spikes in the ACF and PACF. This suggest a possible a seasonal AR (1) and MA 

(1) term. In the non-seasonal lags, there are two significant cut-off in the ACF and PACF respectively. This suggests a 

possible AR (2) and MA (2). Consequently, this initial analysis suggests that a possible model for this series (ENU-PH) 

is an ARIMA (2,1,2)(1,1,1)12. We also fit this model, along with some variations within the neighborhood, and take note 

of their information criteria which are shown in the following table: 

 

Table 12: Information criteria for the SARIMA model along ENU-PHC 

 SARIMA AIC AICC BIC  

 (1,1,2)(1,1,1) 504.95 505.90 518.27  

 (0,1,2)(1,1,1) 507.07 507.74 519.84  

 (1,1,1)(1,1,1) 508.91 509.59 521.68  

 (1,1,0)(1,1,1) 524.52 524.96 534.73  

 (2,1,2)(1,1,1) 506.67 507.96 524.55  

 (2,1,0)(1,1,1) 510.73 511.40 523.50  

 

The model with minimum information criteria is SARIMA (1, 1, 2)(1,1,1), which is taken to be the best model for ENU-

PHC. The parameters of the model are shown below 

 

Table 13: The parameter estimate of SARIMA (1, 1, 2) (1,1,1) 

parameters 𝜙1 𝜃1 𝜃2 𝜙𝑠 ; 𝑠 = 1 𝜃𝑠 ; 𝑠 = 1 

value -0.7409 0.2723 -0.7277 -0.1922 -0.6722 

 

3.6 Diagnostic checking 

To confirm the goodness of these chosen models, we examine whether there is serial correlation among the residuals of 

the fitted models. When error terms from different time periods (or cross section) are correlated, we say that the error 

term is serially correlated. Our interest is to check whether such serial correlation exist among the residuals. This is done 

using the Ljung-Box (1978) test for goodness of fit. The null hypothesis is tested against the alternative which posits that 

there is serial correlation among the residual of the model. 

Test statistic:  
 

Using the test statistic above, the P-value of (𝑄𝑛) for each of the fitted models is presented in the table below 
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Table 16: The Goodness of Fit Test result 

ROUTES d.f P-value 

 

ENU-ABK 

 

16 

 

0.6543 

NSK-9THMILE 16 0.7707 

ENU-ONITSHA 16 0.3924 

ENU-PHC 16 0.720 

 

The P-value of all the tests for the presence of serial correlation among the residuals of each of the fitted models is 

relatively high. This does not support the rejection of the null hypothesis. Therefore, we conclude that since there is no 

serial correlation among the residuals of the fitted models, the models are each good enough to explain the generation 

process of the cases of accident in each of the routes. 

 

3.7 Model Performance Measures 

Here, we shall make use of some error measures to assess the performance of the fitted models. The following measures 

are considered. 

 

Table 17: The Error Performance measures along the routes 

ROUTES MAE SSE MSE MAPE 

 

ENU-ABK 

 

2.4785 

 

1347.775 

 

12.4794 

 

∞ 

NSK-9THMILE 2.4849 1282.806 11.8778 ∞ 

ENU-ONITSHA 2.9345 1707.121 15.8067 0.4732 

ENU-PH 2.2016 917.905 8.2399 ∞ 

RTC 6.2168 9014.257 83.4653 0.5498 

 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

The seasonal autoregressive integrated moving average model is the standard Box-Jenkins model used for series that 

exhibit seasonality. The series under consideration were identified to have a consistent seasonal pattern, thus we went on 

to do seasonal differencing to prevent the seasonal pattern from “dying out” in the long term forecast. The SARIMA 

modeling started with exploratory data analysis which involved exploration of the series parameters and test for 

stationarity. The correlogram and sequence plot of the observations captured the behavior of road traffic crashes in the 

selected routes and revealed the presence of seasonal effect, hence the need for seasonal differencing. The seasonality 

identified in each of the routes is additive since the amplitude is independent of the general level of the series. The order 

of the SARIMA models was identified through a critical study of the spikes in the correlogram. Being a multiplicative 

model made up of both seasonal and non-seasonal components, the cut-offs and spikes in the correlogram guided the 

identification of the order for the seasonal and non-seasonal components respectively. In an attempt to justify the 

robustness (goodness) of the fitted SARIMA models, Ljung-Box test for goodness of fit was conducted and it was 

observed that there is no serial correlation among the residuals of the fitted models. 
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