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Abstract:  
The Banach fixed point theorem or contraction theorem of a complete metric space into itself .It state conditions sufficient 

for the existence and uniqueness of a fixed point  
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1. INTRODUCTION:  

It is well Know that the Banach contraction principle is a fundamental result in the fixed point theory, which has been 

used and extended in many different direction, also there are severl generalizations of    usual metric space and  𝐿𝑝 space  

 

Definition(1.1)  (Metric space , Metric ) : A metric space is  a pair (𝑋, 𝑑), where 𝑋 is a set and 𝑑 is a metric on 𝑋 ( or 

distance function on 𝑋 ) , that is a  function  defined on 𝑋×𝑋 such that for all  𝑥, 𝑦, 𝑧 ∈ 𝑋 we have : 

is real valued, finite and nonnegative. (𝑀1) 𝑑  

  (𝑥, 𝑦) = 0    𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦 .(𝑀2) 

   (𝑥, 𝑦) = 𝑑(𝑦, 𝑥)                           (Symmetry )(𝑀3) 

   (𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)     (Triangle inequality  )   (1.1) (𝑀4) 

 

Sequence space  𝑙∞  : as set 𝑋 we take the set of all bounded sequences of  complex numbers , that is every element of  𝑋 

is a complex  sequence  

(1.2) 𝑥 = (𝜉1 , 𝜉,2, … )  𝒃𝒓𝒊𝒆𝒇𝒍𝒚    𝑥 = (𝜉𝑗) 
 

Such that for all 𝑗 = 1,2,… we have |𝜉𝑗| ≤ 𝑐𝑥 , where 𝑐𝑥 is a real number which  may depend on 𝑥  , but does  not depend 

on 𝑗 . We choose the metric define by : 

( 𝑥, 𝑦) = supj ∈N|𝜉𝑗 − 𝜂𝑗|        (1.3) 

 

Where  𝑦 = (𝜂)𝑗 ∈ 𝑋   𝑎𝑛𝑑 𝑁 = {1,2, … } , and sup denotes the supremum " least upper bounded )  .The metric space thus 

obtained is generally denoted by 𝑙∞  is a sequence space  because each element of  𝑋 is a sequence .   

 

2. Preliminaries : (𝑰) 𝒍𝒑 𝒂𝒎𝒆𝒕𝒓𝒊𝒄 𝒔𝒑𝒂𝒄𝒆 

Let   ≥ 1  be a fixed real number . By definition , each element in the space   𝑙𝑝is a sequence  𝑥 = (𝜉𝑗) = (𝜉1 , 𝜉,2, …)  of  

number such that |𝜉1|𝑝 + |𝜉2 |𝑝 + ⋯ converges  ;  

                

      Thus                           ∑∞
𝑗=1|𝜉𝑗|𝑝 < ∞                 (2.1)     (  ≥ 1 , 𝑓𝑖𝑥𝑒𝑑) 

 

And the metric is  defined by  

 
 

Where   . 

 

In  the  case 𝑝 = 2 , we have the famous Hilbert sequence space  𝑙2 with  metric   defined by  :  

                             (2.3) 

This space was introduced and studied by D. Hilbert (1912) in connection with integral equations and is the earliest 

example of what is now called a Hilbert space. 

 We shall derive: 

 

(a) an auxiliary inequality :  Let  𝑝 > 1  and defined 𝑞  by   

                                         (2.4) 

 

are then called conjugate exponents. This is a standard term.  𝑝  𝑎𝑛𝑑 𝑞   

From (2.4) we have 

 
 

Hence : 

1⁄(𝑝 − 1) = 𝑞 − 1 , so that  𝑢 = 𝑡𝑝−1   implies    𝑡 = 𝑢𝑞−1 

 

    Let   𝑎𝑛𝑑 𝛽 be any positive numbers. Since 𝛼 𝛽 is the area of the rectangle, we thus obtain by integration the inequality  

 
Note that this inequality is trivially true if   𝛼 = 0 𝑜𝑟 𝛽 = 0 
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(b) the Holder inequality from (a) . Let  (�̅�𝑗) 𝑎𝑛𝑑  (�̅�𝑗  )  be such that   

∑|𝜉�̅� |𝑝 = 1 ,      ∑|𝜂 ̅𝑗  |𝑞 = 1                  (2.7) 

 

 Setting 𝛼 = |𝜉�̅� | 𝑎𝑛𝑑    𝛽 = |𝜂 ̅  | ,   we have from (2.6) the inequality  

                                      (2.8) 

We now take any nonzero 𝑥 = (𝜉𝑗) ∈ 𝑙𝑝 𝑎𝑛𝑑  𝑦 = (𝜂𝑗) ∈ 𝑙𝑞   and set  

 
 

Then ( 2.7) is satisfied , so that we may apply (2.8) . Substituting (2.9) into (2.8) and multiplying the resulting inequality  

by the product of the  denominators in (9)  

  , we arrive at the Holder inequality for sums  

 
 

 Where   > 1  and .This inequality was given by O. Holder  

  

 If   = 2, 𝑡ℎ𝑒𝑛 𝑞 = 2 and (2.10) yields the Cauchy –Schwarz inequality for sums  

                     (2.11) 

 

It is too early to say much about this case 𝑝  in which 𝑝 equals  its  conjugate 𝑞 , but we want to make at least  

 

(c)  the Minkowski inequality from (b) :  for sums  

 
   

 Where   𝑥  𝑙  and 𝑦 )  𝑙𝑝   and   𝑝  1  

For   = 1the  inequality follows readily from  the formulas we shall write   𝜉𝑗 + 𝜂𝑗 = 𝜔𝑗 . The triangle inequality for numbers 

gives 

 
 

Summing over j from 1 to any fixed n, we obtain   

 
 

To the first sum on the right, we apply the Holder inequality, finding  

 
 

On the right we simply have: (𝑝−1) 𝑞=𝑝 because 𝑝𝑞  𝑞 

Treating the last sum in (2.13) in a similar fashion, we obtain  

 
 

Together, 

 
 

Dividing by the last factor on the right and noting that 1 − 1⁄𝑞 = 1⁄𝑝 

We obtain (2.12) with n instead of ∞. We now let 𝑛 → ∞ hence the series on the left also converges, and (2.12) is 

proved. 

  (d) the triangle inequality (M4) from (c): From (2.12) it follows that for  

𝑥 𝑎𝑛𝑑 𝑦 𝑖𝑛 𝑙 the series in (2.2) converges. (2.12) also yields the triangle inequality.  
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In fact , taking  any 𝑥, 𝑦, 𝑧 ∈ 𝑙𝑝 , writing 𝑧 = (𝜉𝑗 ) and using the triangle   inequality for numbers  and then (12) , we 

obtain  

 
⟹ 𝑙𝑝   𝑖𝑠 𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒    # 

 :  here p is fixed  and  1 ≤ 𝑝 < +∞(𝑰𝑰) 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒏𝒆𝒔𝒔 𝒐𝒇  𝒍𝒑 

 

 Let (𝑥𝑛) be any Cauchy sequence in the space 𝑙 , where 𝑥𝑚 = (𝜉1
(𝑚) , 𝜉2

(𝑚), … ) 

 Then for  every  𝜖 > 0   there is an  N such that for all 𝑚, 𝑛 > 𝑁 ,   

 
It  follows  that for every  𝑗 = 1,2, …   we have   

|𝜉(𝑚) − 𝜉𝑗1(𝑛)| < 𝜖                 (𝑚, 𝑛 > 𝑁)   (2.15) 

 

 We choose a fixed 𝑗  .From (2.15) we see that (𝜉𝑗(1) , 𝜉𝑗(2𝑚), … )  isa Cauchy sequence of numbers  .say   𝜉𝑗(𝑚) → 𝜉𝑗  𝑎𝑠 𝑚 

→ ∞ .Using these limits we  define 𝑥 = (𝜉1  , 𝜉2 , . . ) and show that     𝒙 ∈ 𝑙𝑝 and  𝑥𝑚 → 𝑥  .From (2.14) we have for all  

𝑚, 𝑛 >  ,        ∑𝐾𝐽=1 |𝜉𝑗(𝑚) − 𝜉𝑗1(𝑛)| < 𝜖𝑃         (𝑘 = 1,2, . . ) 

 Letting 𝑛 → ∞ , we obtain for  𝑚 > 𝑁 , ∑∞
𝐽=1 |𝜉𝑗(𝑚) − 𝜉𝑗1(𝑛)| < 𝜖𝑃   (2.16)  

This show that  𝑚  𝑙𝑝 .Since  𝑥𝑚 ∈ 𝑙𝑝it  follows by means of  the Minkowski inquality (2.12) that 𝑥 = 𝑥𝑚 + 

(𝑥− 𝑥𝑚) ∈ 𝑙𝑝  . 
Furthermore , the series in (2.16) represents [𝑑(𝑥𝑚, 𝑥𝑛)]𝑝   , so that (2.16) implies that 𝑥𝑚 → 𝑥 .Since   (𝑥𝑚)  was an 

arbitrary Cauchy sequence in𝑙𝑝 .this proves  

compleness of  𝑙𝑝 , where 1 ≤ 𝑝 ≤ +∞  . 

   

(III)  Space 𝒍𝒑   i s separable:  The space 𝒍𝒑 𝑤𝑖𝑡ℎ    1 ≤ 𝑝 ≤ +∞   is separable.  Proof:  Let 𝑀  be the set of all sequences  

𝑦   of the form   

𝑦 = (𝜂1, 𝜂2, … , 𝜂𝑛, 0,0,. . . ) 

 

 is any positive integer and the  𝜂𝑗  ′𝑠 are rational 𝑀 is countable .We 𝑤ℎ𝑒𝑟𝑒 𝑛 show that 𝑀 is dense in 𝒍𝒑 . Let   = (𝝃𝒋) ∈ 

𝑙𝑝  be arbitrary . Then for every 𝜖 > 0   

there is an 𝑛  (depending on 𝜖 ) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡     

 

have the remainder of a converging series . Since the 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑤  rational are dense in   𝑹 , for each   there 

is a rational 𝜂𝐽  close to it  

 
It follows that :   

 
We thus have  (𝒙,𝒚)  < 𝜖  and see that 𝑀 is dense in  𝑙𝑝  
 

(IV) Theorem (2.1)  (Fischer – Riesz) : 𝑙𝑝 is a Banch space  for any 1 ≤ 𝑝 ≤ ∞ 

Proof :   We distinguish the cases  𝑝 = ∞ 𝑎𝑛𝑑 1 ≤ 𝑝 < ∞ 

 

Case (1) : 𝑝  . Let (𝑓𝑛) be a Cauchy sequence  is 𝐿∞ , given  an integer  𝑘>1 there is an integer 𝑁𝑘  such that

  for 𝑚, 𝑛 > 𝑁𝑘 . Hence there is  a null set  𝐸𝑘  such that  

 
Then  we let 𝐸 𝑘 𝐸𝑘 so that E is a null set  and we see that for all The sequence  𝑓𝑛(𝑥)  is Cauchy (𝑖𝑛 ℝ) .Thus 𝑓𝑛(𝑥) → 

𝑓  Ω\𝐸 For all  𝑥  Ω \𝐸  .Passing to the limit in (2.17)as 𝑚 →  we obtain  

 
 

We conclude that 𝑓   and  
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Therefore . 

 

Case (2) : 1  Let (𝑓𝑛)  be a Cauchy sequence in  𝐿𝑝 .In order to  conclude , it suffices to show that a subsequence 

converges  in   𝐿𝑝 
We extract a subsequence   (𝑓𝑛𝑘)  such that   

 
 

We claim that 𝑓𝑛𝑘 converges in  𝑝 .In order to simplify the notation we write 𝑓𝑘  instead of  𝑓𝑛𝑘 , so that we have   

 
Let               

 
 

As a consequence of the monotone convergence theorem 𝑔(𝑥)  tends to a finite limit , say 𝑔(𝑥),𝑎. 𝑒 𝑜𝑛 Ω , 𝑤𝑖𝑡ℎ 𝑔  𝐿𝑃 

.On the other hand m for 𝑚 > 𝑛 > 2 we have  

 
 

It   follows that a.e Ω, 𝑓(𝑥) is Cauchy and converges to a finite limit , say 𝑓(𝑥).  

 We have a.e on Ω  ,  

 

And in particular 𝑓 ∈ 𝐿  .    Finally , we conclude by dominated  convergence that 

 
 

3. Main Results:  Banach Fixed Point Theorem:  

A fixed Point : of  a mapping  𝑇: 𝑋 → 𝑋  of a set  𝑋 into itself is an 𝑥 ∈ 𝑋 which  is  mapped onto  itself , that is  𝑇𝑥 = 𝑥  

, the image  𝑇𝑥 coincides with 𝑥 . 

 

Definition (3.1) (Contraction):    let 𝑋 = (𝑋, 𝑑) be a metric space. 

A mapping 𝑇: 𝑋 → 𝑋   is called a contraction on 𝑋 if there is a positive real number 𝛼 < 1 such that for all 𝑥, 𝑦 ∈ 𝑋: 

(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑑 (𝑥, 𝑦) (𝛼 < 1)     (3.1) 

 

Geometrically this mean that any points 𝑥 𝑎𝑛𝑑   have images thay are closer together than those points 𝑥 𝑎𝑛𝑑 𝑦 , more 

precisely the ratio 𝑑( 𝑇𝑥, 𝑇𝑦 )/𝑑(𝑥, 𝑦) does not exceed a constant 𝛼 which is strictly less than 1. 

 

Banach Fixed Point Theorem (3.2)    (Contraction Theorem ) : 

Consider a metric space𝑋 = (𝑋, 𝑑) , where 𝑋 ≠ ∅ .Suppose that 𝑋 is complete  and let𝑇: 𝑋 → 𝑋 be a contraction on 𝑋 

.Then 𝑇 has precisely one fixed point . 

Proof : We construct a sequence  (𝑥𝑛)  and show that it is Cauchy , so that it converges in the complete space 𝑋 , and then 

we prove that its  limit 𝑥 is a fixed point of   𝑇 and 𝑇 has no further fixed points . This is the idea of the proof . 

We choose any  0 ∈ 𝑋 and define the " iteravtive sequence " (𝑥𝑛)   by  𝑥0   , 𝑥1 =   

𝑇𝑥0 ,2 = 𝑇𝑥1 = 𝑇2𝑥0 , … , 𝑥𝑛 = 𝑇𝑛      (3.2) 

 

Clearly , this the sequence of the images of  𝑥0 under repeated application of   𝑇  

 .We show that (𝑥𝑛) is Cauchy . By (3.1) and (3.2) 

 
= α (𝑇𝑥𝑚−1, 𝑇𝑥𝑚−2) ≤ 𝛼2𝑑(𝑥𝑚−1, 𝑥𝑚−2) … ≤ 𝛼𝑀𝑑(𝑥1, 𝑥0) 

 

Hence by the triangle inequality and the formula for the sum of  a geometric  progression we obtain for  𝑛 > 𝑚   

 
 

Since 0 < 𝛼 < 1, in the numberator we have 1 − 𝛼𝑛−𝑚 < 1 . Consequently   
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On  the right  0 < 𝛼 < 1  and 𝑑(𝑥0,𝑥1)  is fixed , so that we can make the right  hand side as  small as we pleas by taking m 

sufficiently large  

This prove that (𝑥𝑚) is Cauchy. Since 𝑋 is complete (𝑥𝑚) converges, say      

 𝑥𝑚 → 𝑥 . We show that limit 𝑥 is a fixed point of the mapping 𝑇 

 From the triangle inequality and (3.1) we have  

(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑥𝑚) + 𝑑(𝑥𝑚,𝑇𝑥) ≤ 𝑑(𝑥, 𝑥𝑚) + α 𝑑(𝑥𝑚−1, 𝑥) 

 

And can  make the sum in the second line smaller than any preassigned  ∈ > 0  because 𝑥𝑚 → 𝑥 .We conclude that 𝑑(𝑥, 

𝑇𝑥) = 0 so that 𝑥 = 𝑇𝑥 by (M2) .This  shows that  𝑥 is affixed point of  T.    is the only fixed point of   𝑇 because form  𝑇𝑥 

= 𝑥 𝑎𝑛𝑑 𝑇�̃� = �̃� obtain by (3.1)  :  𝑑( 𝑥, �̃�) = 𝑑(𝑇𝑥, 𝑇�̃�) ≤ 𝛼 𝑑(𝑥, �̃�) 

which implies 𝑑( 𝑥, �̃�)=0  since 𝛼 < 1 .Hence 𝑥 = �̃�  by (M2) and the theorem is  prove   # 

 

corollary (3.3) ( Iteration , error bounds ) : Under the conditions of  Theorem (3.2) the iterative sequence (3.2) with 

arbitrary  𝑥0, ∈ 𝑋  converges to the unique  fixed point   𝑥 𝑜𝑓 𝑇  .Error estimates are the prior estimate   

 
and the posterior estimate 

 
 

Proof :  the first statement is obvious form the previous proof. Inequality (3.4)  follows from (3.3) by letting 𝑛 ⟶ ∞ .We 

derive (3.5)  

Taking 𝑚 = 1  and  writing 𝑦0 𝑓𝑜𝑟 𝑥0 𝑎𝑛𝑑 𝑦1 𝑓𝑜𝑟  𝑥1   ,  we have from (3.4) 

 
Setting  0 = 𝑥𝑚−1 , we have 𝑦1 = 𝑇𝑦0 = 𝑥𝑚  , and obtain  (3.5)   

 

Theorem (3.4)   : ( Contraction on a ball ) 

Let 𝑇 be a mapping of a complete metric space 𝑋 = (𝑋, 𝑑) into itself. Suppose   is a contraction on a closed ball  

is 𝑇 satisfies (3.1) for all 𝑥, 𝑦 ∈ 𝑌. Moreover, assume 𝑌 = {𝑥| 𝑑(𝑥, 𝑥0) ≤ 𝑟 }, 𝑡ℎ𝑎𝑡  that                                 

(𝑥0, 𝑇𝑥0)(1 − 𝛼)𝑟                    (3.6) 

 

Then the iterative sequence (3.2)  converges to an 𝑥 ∈ 𝑌 .This 𝑥 is a fixed point  of 𝑇and is the only fixed point of    𝑇 𝑖𝑛 

𝑌 . 

Proof : We merely have to show that all 𝑥𝑚′𝑠 as well as 𝑥 lie in 𝑌.  We put 𝑚 = 0  in (3.4)  , change  𝑛 𝑡𝑜 𝑚  and use (3.5) 

to get  

 
 

Hence all    𝑥𝑚′𝑠 are in 𝑌. also 𝑥 ∈ 𝑌 since 𝑥𝑚 → 𝑥 𝑎𝑛𝑑 𝑌   is closed. The assertion of the theorem now follows   from 

the proof of Banach’s theorem   
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