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Abstract: 
Probabilities of two types of errors are estimated for the False Discovery Rate Procedure (FDR), Dunnett’s test, and 

conducting individual t-tests when treatments are being compared against a control.  Probabilities for two types of powers 

are also estimated.  The number of treatments considered is 50, 100, 150, and 300 with the first treatment being the 

control. Differing numbers of treatments equal to the control are considered with equal sample sizes of 3 and 5.   
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1. INTRODUCTION  

     In recent years, there has been a revolution of massive amounts of data in many areas including genomics, astrophysics, 

plant sciences, social sciences, and others.  Researchers may wish to compare several treatments at a time in order to 

determine which treatments differ.  In this case, several may be a few hundred treatments.        There are two distinct 

scenarios that researchers may use to test if there are differences among several treatments; the multiple comparison 

scenario which is a two-stage process, and the multiple testing scenario which conducts several simultaneously individual 

tests.  In the multiple comparison scenario, we first conduct an overall test to see if there are any treatment differences.  If 

the overall test is rejected, a post-hoc multiple comparison procedure is used to determine where these differences lie.  

Some of the common post-hoc procedures include Sheffe’s, Fisher’s Least Significant Difference, and Tukey’s [1].  

Dunnett’s test is a common multiple comparison testing procedure used when comparing all the treatments with a single 

control [1].  In this case, the total number of comparisons is reduced since not all treatments are being compared against 

each other.  As an example, suppose that 6 treatments are being compared.  In this case, 15 pairwise comparisons would 

need to be made, but if there were 5 treatments being compared against 1 control, only 5 comparisons would need to be 

made.  Multiple comparison procedures were designed to control for the family-wise error rate (FWER) which is defined 

as the probability of at least one Type I error when testing for differences among the entire family of treatments [1].    

     When doing multiple testing of simultaneous hypotheses, one could also control the FWER.  Suppose we are testing 

50 null hypotheses using a Bonferroni type of control of the FWER [1]. The probability of finding at least one significant 

result due to chance = 1-P (no significant results)50 = 1 - (1-0.05/50)50 = 0.0488. Meaning there is a 4.88 % chance of 

rejecting at least one null hypothesis. The 0.05 here is a per-comparison kind of type I error rate. The more tests we 

perform, the more difficult it becomes to detect significance in at least one test as the adjusted significance level of alpha 

gets extremely small (α *= α /m, where m is the total number of null hypotheses being tested). On the other hand if we 

are testing 50 hypotheses simultaneously at a significance level of α = 0.05 where no multiple comparison post-hoc FWER 

control is specified, the probability of observing significance in at least one test due to chance will be P (at least one 

significant result) = 1- P (no significant results) 50 = 1- (1-0.05)50 = 0.9231. Hence in 50 tests, we have 92.31% chance of 

finding at least one significant result even if none of the tests is actually significant. With a large number of tests, this 

probability approaches 1.   

     The problem with controlling the FWER is that if the number of hypotheses to be tested becomes large (or as the 

number of treatments to be compared becomes large), the probability of rejecting a null hypothesis will become very small 

even when the null hypothesis is incorrect.  In other words, the power is low and one may rarely determine a difference 

in two treatments even when there is one. As an alternative to controlling the FWER, Benjamini and Hochberg [2] 

introduced the False Discovery Rate Controlling Procedure (FDR).  This is defined to be “the expected ratio of erroneous 

rejections to the number of rejected hypotheses” [2].  One of the areas in which the FDR method has been used extensively 

is in genomics research where thousands of genes are often simultaneously being compared and their relationship to 

particular diseases are investigated. Scientists confronted by this problem of large number of comparisons often find the 

FDR to be an appealing quantification of error [3,4].   

Since the introduction of the False Discovery Rate Controlling Procedure (FDR), various researchers have suggested 

possible changes to it.  This includes the introduction of the Benjamini Hochberg procedure [5], and work done by 

[6,7,8,9,10,11].  In particular, Efron [10] conducted research on correlation and the effect that it had on the FDR.   

Gordon, Glazko  Qiu, and Yakovlev [12] did some comparison of the Benjamini Hochberg procedure associated with the 

FDR with the FWER using Bonferroni.  Additional work needs to be conducted to more fully understand the error rate 

being controlled for in the FDR [3].  Research conducted in this paper was an attempt to do this in a limited setting.  

 

2. Proposed Research  

     The research conducted in this study was designed to compare results of using Dunnett’s test with the results of using 

the FDR method.  Dunnett’s test [1, 13, 14] is a well-known multiple comparison test designed to control FWER.  It is 

used after an ANOVA is performed and the null hypothesis that all treatments are the same is rejected.  Dunnett’s test 

then compares the control (1st treatment) with each of the other treatments to determine which of the other treatments 

differs significantly with the control [15].  In order to compare the FDR method on an equal basis with Dunnett’s test, the 

FDR method was also used only to compare each treatment with the control (1st treatment).  

     A simulation study was designed with the number of treatments being 50,100, 150 and then 300.  The variance of each 

treatment population was set to be the same throughout all of the treatments.  Equal sample sizes of 3 and then 5 were 

used for each treatment.  A variety of situations for each sample size and number of treatments were considered. For each 

situation, 10,000 samples were simulated.  Tests were conducted on each of the samples and it was determined for each 

test whether or not the null hypothesis was rejected.  SAS version 9.3  

[16] was used in simulating the samples and conducting the tests.  The FDR method was conducted by using PROC 

MULTTEST in SAS [17, 18, 19].   

     This simulation study used only two different means.  The first mean was µ = 1763.18 (control mean) and the second 

mean was µ = 2641.1 (this was the mean of treatments if they were different from the control).  The standard deviation, 

σ, was equal to 438.96.  The underlying distributions were normal. These selected values for the means and standard 

deviation were used because they came from a study comparing the mean seed yield of different genotypes of edible dry 

beans conducted by Kubat [20].    

     When 50 treatments were considered with the first treatment being the control, the following settings were simulated: 

1:49; 10:40; 25:25; 40:10; and 49:1.  The first number given is the number of treatments with the low mean including the 

control and the second number given is the number of treatments with the high mean.  In the case 1:49, only the control 
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has the low mean and the other 49 treatments are all different than the control with the high mean.  In the case 10:40, 9 

treatments have the same mean as the control and 40 treatments have a higher mean than the control.  It is also noted that 

the means are set up so that the higher mean is 2 standard deviations above the first mean µ = 2641.1 (1763.18 + 2 × 

438.96).  

     When 100 treatments were considered with the first treatment being the control, the following settings were simulated:  

1:99; 25:75; 50:50; 75:25, and 99:1.  For 150 treatments, the following settings were simulated:  1:149; 25:125; 50;100; 

75:75; 100:50; 125:25; and 149:1.  In the case of 300 treatments, the following settings were simulated:  1:299; 50:250; 

100:200; 150:150; 200:100; 250:50; and 299:1.  

     In addition to having the underlying distributions be all normal distributions, we also conducted simulations in which 

the underlying distributions were all contaminated normal distributions.  In this case, all of the distributions were 90% 

normal with a standard deviation of 438.96.  The remaining 10% was normal with the mean the same mean as in the first 

population, but the standard deviation was twice the standard deviation of the original population.  The same settings were 

simulated as before with the two means.   

     Four measures were calculated for each set of the 10,000 samples in order to allow us to compare the FDR method 

with that of Dunnett. In addition to the FDR method and Dunnett, we also calculated each of these measures with respect 

to conducting individual t-tests for each case (this was referred to as RAW in this study in the tables).  The first measure 

calculated was the Relative Power percentage of all of the tests in each setting.  In calculating the Relative Power 

percentage (RP), we counted the total number of rejections when comparing the treatment groups to the control group 

when the null hypothesis is false and divided this by the total number of comparisons between each treatment and the 

control in which the null hypothesis was false.  This was multiplied by 100 to get the percentage.  The formula for 

calculated RP is given in (1)  

                                  (1) 

 

If we consider the first scenario of 50 simulated treatments (1:49), we count the total number of rejections made divided 

by a total of 490,000 comparisons (49 comparisons multiplied by 10,000 simulations).  This is done for each of the three 

methods.  

     The next measure that was calculated for each method was the Actual Power percentage.  In calculating the Actual 

Power percentage (AP), we counted the number of times that a test had at least one rejection in a sample when the null 

hypotheses was false divided by the total number of simulations and then multiplied by 100 to get the percentage.  This 

would give us some idea of the ability of each of the tests to find at least one difference when there was at least one 

difference using the information in a sample.  The AP is given by equation (2).  

                                   (2) 

    

     The Relative Type I Error Rate (RE) was calculated for each method.  In this case, we look at every sample that was 

simulated and every comparison made within a sample and counted the number of times the null hypothesis was rejected 

when it was true divided by the number of times the null hypothesis was true and multiplied by 100.  For example in the 

setting 25:25, 24 samples are simulated each time that are from the same population as the control and this is done 10,000 

times.  Hence the number of true null hypothesis in this case would be 240,000 (24 X 10,000).  The value in the 

denominator when calculating the RE (in this setting) would then be 240,000 in the equation given in (3)  

                                 (3) 

    

     We calculated the Actual Type 1 error rate percentage for each of the methods in the study.  This is also known as the 

Family Wise Error Rate (FWER).  The Actual Type 1 error rate (AE) or FWER was estimated by counting the number of 

times of getting at least one false rejection in a simulated sample divided by the number of simulations and then multiplied 

by 100 to get the percentage.  The AE (or FWER) is given by equation (4).  

                          (4) 

 

3. Results  

     The results for 50 treatments all having a sample size of 3 are given in Table 1 for each of the four measures.  Recall 

that in the setting 1:49, there was one control with a mean of 1763.18 and the remaining 49 treatments had a mean of 

2641.1.  All of the treatment populations and the control population had the same standard deviation of 438.96.  It is noted 

that the RE for the individual t-tests (Raw) stays at around 5% which is what we had set alpha equal to for the individual 

tests.  The RE of Dunnett’s test stays well below 5% since we are controlling for FWER and there are several treatments.  

The RE for the FDR methods lies between the RE of the other two methods.  The AE or FWER for the individual t-tests 

does get large and is at 44.63% for the setting 25:25.  The FWER stays approximately at 5% or below for the Dunnett’s 

test since this is what is controlled for.  The FWER does get higher than 5% for the FDR Method, but it does stay quite a 

bit lower than for the individual t-tests, being 14.69% compared to 44.63% in the setting 25:25.  The RP is also higher for 

the FDR Method compared with Dunnett’s test except for the 49:1 setting.  It is noted that the RP stays the same for both 

the individual t-tests and Dunnett’s test because all of the comparisons being done are at the same level of alpha with 

alpha being approximately 0.20% for Dunnett and 5% for the individual t-tests for all the settings.  The alpha level changes 

with each setting for the FDR method ranging from approximately 0 .53% to 2.26%  
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since it is the false discovery rate being controlled for which changes with the differing number of   

 

Table 1:  Summary of Rejections Percentages in case of 50 treatments with sample size 3  

 
 

Table 2: Summary of Rejections Percentages in case of 300 treatments with sample size 3 

 

 
  

treatments equal to the control. The relative power of the FDR changes with higher relative power when there are a larger 

number treatments that are different from the control. The AP gives the percentage of times that each of the methods 

picked up at least one treatment different than the control for each sample. Dunnett and FDR method have about the same 

AP with Dunnett being just a little higher. In the setting 1:49 the RE and FWER are both zero for all of the methods since 

all of the treatment populations differ from the control.   Table 2 given the values of the four measures for each of the 

methods based on equal sample sizes of 3 when there are 300 different treatment populations with one of these being the 

control.  The same patterns are seen in this case.    

  

     Tables 3 and 4 give the RE, AE, RP, and AP for all of the methods in the case of 50 and then 300 treatments with equal 

sample sizes of 5.  Again, similar patterns are seen.  Table 5 and 6 give the results for the contaminated normal distribution 

with equal sample sizes of 3 and number of treatments being 50 and 300, respectively.  Comparing the results in Table 1 

for normal distributions to those in Table 5 with contaminated normal distributions, one can see that the error percentages 

are about the same in both cases, but the powers are lower in the contaminated normal case.  Similar results can be seen 

when comparing the results in Table 3 (normal distributions) with the results in Table 6 (contaminated normal 

distributions).  
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Table 3: Summary of Rejections Percentages in case of 50 treatments with sample size 5  

 
 

Table 4: Summary of Rejections Percentages in case of 300 treatments with sample size 5  

   

Type I error  

  

Power  

  

SETTINGS  

  

TESTS  

Relative 

(RE)  

Actual  

(AE/FWER)  

Relative 

(RP)  

Actual (AP)  

1:299  Raw  

Dunnett’s test  

FDR Method  

  

___  

  

___  

88.68  

35.75  

84.83  

100.00  

98.43  

98.00  

50:250  Raw  

Dunnett’s test  

FDR Method  

4.80  

0.04  

2.60  

61.45 1.40  

45.06  

88.80  

35.58  

82.97  

100.00  

98.50  

98.09  

100:200  Raw  

Dunnett’s test  

FDR Method  

4.80  

0.04  

2.16  

78.06 2.31  

52.37  

88.62  

35.65  

80.13  

100.00  

98.22  

97.73  

150:150  Raw  

Dunnett’s test  

FDR Method  

5.03  

0.04  

1.59  

85.36 3.21  

48.49  

88.39  

35.27  

76.20  

100.00  

97.53  

96.98  

200:100  Raw  

Dunnett’s test  

FDR Method  

5.01  

0.04  

1.13  

90.21 1.06  

37.25  

88.59  

35.58  

71.25  

100.00  

96.69  

95.82  

250:50  Raw  

Dunnett’s test  

FDR Method  

4.95  

0.04  

0.68  
 

88.63  

35.53  

61.93  

99.99  

94.25  

92.23  

299:1  Raw  

Dunnett’s test  

FDR Method  

4.93  

0.04  

0.29  

94.92  

4.98  

3.46  

88.79  

35.74  

27.45  

88.79  

35.74  

27.45  

  

  

93.08   

4.35   

22.86   
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Table 5: Summary of Rejections Percentages in case of 50 treatments with sample size 3 in Contaminated Normal  

    

Type I error  

  

Power  

  

SETTINGS  

  

TESTS  

Relative 

(RE)  

Actual  

(AE/FWER)  

Relative 

(RP)  

Actual 

(AP)  

1:49  Raw  

Dunnett’s test  

FDR Method  

___  ___  56.82  

15.24  

41.56  

98.74  

76.31  

73.85  

10:40  

  

Raw  

Dunnett’s test  

FDR Method  

5.19  

0.26  

2.15  

27.82 1.97  

11.20  

57.01  

15.35  

38.39  

98.52  

74.01  

71.39  

25:25  Raw  

Dunnett’s test  

FDR Method  

5.26  

0.28  

1.68  

48.16 4.19  

14.97  

57.45  

15.87  

32.06  

97.61  

67.66  

64.24  

40:10  Raw  

Dunnett’s test  

FDR Method  

5.30  

0.29  

1.08  

59.89 6.30  

11.27  

57.14  

15.55  

21.81  

93.52  

52.33  

47.20  

49:1  Raw  

Dunnett’s test  

FDR Method  

5.08  

0.28  

0.68  

64.57  

6.82  

5.81  

58.23  

16.18  

12.53  

58.23  

16.18  

12.53  

 

Table 6: Summary of Rejections Percentages in case of 300 treatments with sample size 3 in Contaminated Normal  

   

Type I error  

  

Power  

  

SETTINGS  

  

TESTS  

Relative 

(RE)  

Actual  

(AE/FWE 

R)  

Relative 

(RP)  

Actual 

(AP)  

1:299  Raw  

Dunnett’s test  

FDR Method  

  

___  

  

___  

58.14 8.13  

42.40  

99.95  

86.30  

82.29  

50:250  Raw  

Dunnett’s test  

FDR Method  

5.21  

0.11  

2.13  

65.74 2.97  

26.08  

57.76 8.07  

38.65  

99.96  

84.03  

79.55  

100:200  Raw  

Dunnett’s test  

FDR Method  

5.12  

0.09  

1.74  

83.07 5.26  

31.05  

57.54 8.12  

35.04  

99.90  

81.50  

76.29  

150:150  Raw  

Dunnett’s test  

FDR Method  

5.06  

0.11  

1.53  

90.88 6.79  

30.50  

57.71 8.11  

30.41  

99.83  

78.89  

72.85  

200:100  Raw  

Dunnett’s test  

FDR Method  

5.11  

0.10  

1.18  
 

57.21 7.86  

24.52  

99.68  

72.78  

65.72  

250:50  Raw  

Dunnett’s test  

FDR Method  

5.19  

0.09  

0.90  

97.13 9.62  

19.42  

57.25 7.85  

17.37  

99.03  

62.14  

54.21  

299:1  Raw  

Dunnett’s test  

FDR Method  

5.16  

0.10  

0.53  

98.26  

11.41  

7.35  

57.77  

8.08  

5.79  

57.77  

8.08  

5.79  

  

4. Conclusion  

     In the end, the FDR method is a compromise between using multiple t-tests and using Dunnett’s test. The choice of an 

appropriate test will depend on the objectives at stake in an individual research project. When type I error is detrimental 

to the outcomes of the research, Dunnett’s test offers a better alternative. Though the power of Dunnett’s test decreases as 

the number of treatments increases, its Family Wise Error Rate is maintained at a constant level across all treatments. This 

option might be of value in a marketing situation in which a type I error could cause the loss of a considerable amount of 

money and the power of the test is not as important as severely limiting the probability of a type I error.  

     However, when the objective of the researcher is to detect as many of the differences as possible, and a type I error 

although not desired is not as detrimental, then the FDR method is preferred. The probability of a type I error increases as 

94.93   

8.74   

26.01   
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the number of treatments gets higher using the FDR method, but not as much as using multiple t-tests. The strength in the 

FDR method is that it can find considerably more actual differences than Dunnett’s test.  

     When there are a total of 300 treatments with 49 treatments that are the same as the control and 250 treatments different 

from the control and we have equal samples of size 3, Dunnett’s test will generally not find any of the treatments that are 

the same as the control as being significantly different (49 X 0.0004 = 0.02 from Table 2). However, Dunnett’s test will 

only find approximately 34 of the 250 treatments that are different from the control as being significantly different (250 

X 0.1376 = 34.3). The FDR method will find approximately 1 of the 49 treatments the same as the control as being 

significantly different 49 X .0217 = 1.06). However, the FDR method will find approximately 132 of the 250 treatments 

different from the control as being significantly different (250 X 0.5260=131.5). Hence, by using the FDR method over 

Dunnett’s test there will be 98 additional differences found where there are differences (over Dunnett’s test) and only 1 

extra difference marked as significantly different where no actual difference exists.      

     When half of the treatments are different from the control, the FDR method finds approximately 68 of the 150 (150 X 

0.4503=67.54) treatments that are different from the control as being significantly different from the control while finding 

approximately 2 treatments that are the same as the control to be significantly different from the control (149 X 

0.015=2.24). In this situation, Dunnett’s test is only able to identify 21 out of the 150 differences (150 X 0.1403=21.05) 

that are significantly different from the control as being significantly different from control; while finding at most 1 

treatment (0.0005 X 149=0.075) that is the same as the control as significantly different from the control. Hence by using 

the FDR method, over Dunnett’s test, there will be 47 additional differences found where there are differences and only 

2 extra differences marked as significantly different where no actual difference exists.     
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